An interval matrix is a matrix whose entries are intervals in the set of the real numbers. Let p , q be nonzero natural numbers and let alpha=([\underline{alpha}_{i,j},overline{alpha}_{i,j}])_{i,j} be a p x q interval matrix; given a p x q matrix A with entries in R, we say that A is in alpha if a_{i,j} in [\underline{alpha}_{i,j}, overline{alpha}_{i,j}] for any i,j. We establish a criterion to say if an interval matrix contains a matrix of rank 1. Moreover we determine the maximum rank of the matrices contained in a given interval matrix. Finally, for any interval matrix alpha with no more than 3 columns, we describe a way to find the range of the ranks of the matrices contained in alpha.
On rank range of interval matrices / Elena Rubei. - In: LINEAR ALGEBRA AND ITS APPLICATIONS. - ISSN 0024-3795. - STAMPA. - 561:(2019), pp. 81-97. [10.1016/j.laa.2018.09.018]
On rank range of interval matrices
Elena Rubei
2019
Abstract
An interval matrix is a matrix whose entries are intervals in the set of the real numbers. Let p , q be nonzero natural numbers and let alpha=([\underline{alpha}_{i,j},overline{alpha}_{i,j}])_{i,j} be a p x q interval matrix; given a p x q matrix A with entries in R, we say that A is in alpha if a_{i,j} in [\underline{alpha}_{i,j}, overline{alpha}_{i,j}] for any i,j. We establish a criterion to say if an interval matrix contains a matrix of rank 1. Moreover we determine the maximum rank of the matrices contained in a given interval matrix. Finally, for any interval matrix alpha with no more than 3 columns, we describe a way to find the range of the ranks of the matrices contained in alpha.File | Dimensione | Formato | |
---|---|---|---|
compl-interCORRECT-REVISED-FINE.pdf
Open Access dal 17/01/2021
Descrizione: .
Tipologia:
Versione finale referata (Postprint, Accepted manuscript)
Licenza:
Tutti i diritti riservati
Dimensione
284.31 kB
Formato
Adobe PDF
|
284.31 kB | Adobe PDF | |
29-LAAInterval.pdf
Accesso chiuso
Descrizione: Articolo principale
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Tutti i diritti riservati
Dimensione
365.31 kB
Formato
Adobe PDF
|
365.31 kB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.