An interval matrix is a matrix whose entries are intervals in the set of the real numbers. Let p , q be nonzero natural numbers and let alpha=([\underline{alpha}_{i,j},overline{alpha}_{i,j}])_{i,j} be a p x q interval matrix; given a p x q matrix A with entries in R, we say that A is in alpha if a_{i,j} in [\underline{alpha}_{i,j}, overline{alpha}_{i,j}] for any i,j. We establish a criterion to say if an interval matrix contains a matrix of rank 1. Moreover we determine the maximum rank of the matrices contained in a given interval matrix. Finally, for any interval matrix alpha with no more than 3 columns, we describe a way to find the range of the ranks of the matrices contained in alpha.

On rank range of interval matrices / Elena Rubei. - In: LINEAR ALGEBRA AND ITS APPLICATIONS. - ISSN 0024-3795. - STAMPA. - 561:(2019), pp. 81-97. [10.1016/j.laa.2018.09.018]

On rank range of interval matrices

Elena Rubei
2019

Abstract

An interval matrix is a matrix whose entries are intervals in the set of the real numbers. Let p , q be nonzero natural numbers and let alpha=([\underline{alpha}_{i,j},overline{alpha}_{i,j}])_{i,j} be a p x q interval matrix; given a p x q matrix A with entries in R, we say that A is in alpha if a_{i,j} in [\underline{alpha}_{i,j}, overline{alpha}_{i,j}] for any i,j. We establish a criterion to say if an interval matrix contains a matrix of rank 1. Moreover we determine the maximum rank of the matrices contained in a given interval matrix. Finally, for any interval matrix alpha with no more than 3 columns, we describe a way to find the range of the ranks of the matrices contained in alpha.
2019
561
81
97
Goal 17: Partnerships for the goals
Elena Rubei
File in questo prodotto:
File Dimensione Formato  
compl-interCORRECT-REVISED-FINE.pdf

Open Access dal 17/01/2021

Descrizione: .
Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 284.31 kB
Formato Adobe PDF
284.31 kB Adobe PDF
29-LAAInterval.pdf

Accesso chiuso

Descrizione: Articolo principale
Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 365.31 kB
Formato Adobe PDF
365.31 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1135368
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact