Given a sequence ${a_m}_{mgeq 0} of strictly increasing positive integers such that $a_0=1$, any non-negative integer $N$ can be uniquely represented by $N=sum_{igeq 0} d_i a_i $, where $d_i$ are non negative integers. The coefficients $d_i$ form a string over a finite alphabet and all these strings form a language having different properties depending on the sequence. We investigate on the possibility of defining a Gray code over the language arising from particular choices of ${a_m}_{mgeq 0}$. We consider the sequence defined by a two termed linear recurrence with constant coefficients having some particular properties.
A gray code for a regular language / Elena Barcucci, Antonio Bernini, Renzo Pinzani. - ELETTRONICO. - 2113:(2018), pp. 87-93. (Intervento presentato al convegno GASCom 2018 Random Generation of Combinatorial Structures).
A gray code for a regular language
Elena Barcucci;Antonio Bernini;Renzo Pinzani
2018
Abstract
Given a sequence ${a_m}_{mgeq 0} of strictly increasing positive integers such that $a_0=1$, any non-negative integer $N$ can be uniquely represented by $N=sum_{igeq 0} d_i a_i $, where $d_i$ are non negative integers. The coefficients $d_i$ form a string over a finite alphabet and all these strings form a language having different properties depending on the sequence. We investigate on the possibility of defining a Gray code over the language arising from particular choices of ${a_m}_{mgeq 0}$. We consider the sequence defined by a two termed linear recurrence with constant coefficients having some particular properties.File | Dimensione | Formato | |
---|---|---|---|
A Gray code for a regular language ceur.pdf
Accesso chiuso
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Tutti i diritti riservati
Dimensione
402.36 kB
Formato
Adobe PDF
|
402.36 kB | Adobe PDF | Richiedi una copia |
BARCUCCI_BERNINI_PINZANI_LOC_PROC.pdf
accesso aperto
Descrizione: Local proceedings
Tipologia:
Altro
Licenza:
Tutti i diritti riservati
Dimensione
250.1 kB
Formato
Adobe PDF
|
250.1 kB | Adobe PDF |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.