Given a sequence ${a_m}_{mgeq 0} of strictly increasing positive integers such that $a_0=1$, any non-negative integer $N$ can be uniquely represented by $N=sum_{igeq 0} d_i a_i $, where $d_i$ are non negative integers. The coefficients $d_i$ form a string over a finite alphabet and all these strings form a language having different properties depending on the sequence. We investigate on the possibility of defining a Gray code over the language arising from particular choices of ${a_m}_{mgeq 0}$. We consider the sequence defined by a two termed linear recurrence with constant coefficients having some particular properties.

A gray code for a regular language / Elena Barcucci, Antonio Bernini, Renzo Pinzani. - ELETTRONICO. - 2113:(2018), pp. 87-93. (Intervento presentato al convegno GASCom 2018 Random Generation of Combinatorial Structures).

A gray code for a regular language

Elena Barcucci;Antonio Bernini;Renzo Pinzani
2018

Abstract

Given a sequence ${a_m}_{mgeq 0} of strictly increasing positive integers such that $a_0=1$, any non-negative integer $N$ can be uniquely represented by $N=sum_{igeq 0} d_i a_i $, where $d_i$ are non negative integers. The coefficients $d_i$ form a string over a finite alphabet and all these strings form a language having different properties depending on the sequence. We investigate on the possibility of defining a Gray code over the language arising from particular choices of ${a_m}_{mgeq 0}$. We consider the sequence defined by a two termed linear recurrence with constant coefficients having some particular properties.
2018
Random and Exhaustive Generation of Combinatorial Structures 2018
GASCom 2018 Random Generation of Combinatorial Structures
Elena Barcucci, Antonio Bernini, Renzo Pinzani
File in questo prodotto:
File Dimensione Formato  
A Gray code for a regular language ceur.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 402.36 kB
Formato Adobe PDF
402.36 kB Adobe PDF   Richiedi una copia
BARCUCCI_BERNINI_PINZANI_LOC_PROC.pdf

accesso aperto

Descrizione: Local proceedings
Tipologia: Altro
Licenza: Tutti i diritti riservati
Dimensione 250.1 kB
Formato Adobe PDF
250.1 kB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1136747
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? ND
social impact