We prove a three spheres inequality with optimal exponent at the boundary for solutions to the Kirchhoff–Love plate’s equation satisfying homogeneous Dirichlet conditions. This result implies the Strong Unique Continuation Property at the Boundary (SUCPB). Our approach is based on the method of Carleman estimates, and involves the construction of an ad hoc conformal mapping preserving the structure of the operator and the employment of a suitable reflection of the solution with respect to the flattened boundary which ensures the needed regularity of the extended solution. To the authors’ knowledge, this is the first (nontrivial) SUCPB result for fourth-order equations with a bi-Laplacian principal part.

Optimal Three Spheres Inequality at the Boundary for the Kirchhoff–Love Plate’s Equation with Dirichlet Conditions / Alessandrini, G., Rosset, E., Vessella, S.. - In: ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS. - ISSN 0003-9527. - STAMPA. - 231:(2019), pp. 1455-1486. [10.1007/s00205-018-1302-9]

Optimal Three Spheres Inequality at the Boundary for the Kirchhoff–Love Plate’s Equation with Dirichlet Conditions

Vessella S.
2019

Abstract

We prove a three spheres inequality with optimal exponent at the boundary for solutions to the Kirchhoff–Love plate’s equation satisfying homogeneous Dirichlet conditions. This result implies the Strong Unique Continuation Property at the Boundary (SUCPB). Our approach is based on the method of Carleman estimates, and involves the construction of an ad hoc conformal mapping preserving the structure of the operator and the employment of a suitable reflection of the solution with respect to the flattened boundary which ensures the needed regularity of the extended solution. To the authors’ knowledge, this is the first (nontrivial) SUCPB result for fourth-order equations with a bi-Laplacian principal part.
2019
231
1455
1486
Goal 17: Partnerships for the goals
Alessandrini, G., Rosset, E., Vessella, S.
File in questo prodotto:
File Dimensione Formato  
Al-Ro-Ve_SUCP-plates_ARMA.pdf

Accesso chiuso

Descrizione: file pdf
Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 783.88 kB
Formato Adobe PDF
783.88 kB Adobe PDF   Richiedi una copia
1-Al-Ro-Ve_SUCP-plates_ARMA-bozze.pdf

accesso aperto

Descrizione: pdf
Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 1.04 MB
Formato Adobe PDF
1.04 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1137074
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 7
social impact