Here we present, for the first time, the complete chromosome painting map of Saguinus midas, the red-handed tamarin. Chromosome banding and painting with human chromosome-specific probes were used to compare the karyotype of this species with those of four other Neotropical primates of the subfamily Callitrichinae: Leontopithecus rosalia, Callithrix geoffroyi, C. penicillata, and Mico argentatus. The chromosome painting map of S. midas was identical to that of L. rosalia and other previously studied tamarin species (genera Saguinus and Leontopithecus). The three marmoset species studied (genera Callithrix and Mico) differed in the painting pattern of four human probes (chromosomes 1, 2, 10, and 16). These paints identified the presence or absence of chromosome associations HSA 1/10 and 2/16 in these taxa. By integrating our data with those from the literature, we were able to propose an ancestral Callitrichinae karyotype. The genera Saguinus and Leontopithecus (tamarins) conserve the ancestral Callitrichinae karyotype, while Mico and Callithrix (marmosets) show more derived karyotypes due to chromosome translocations and fissions that occurred during the evolution of these taxa.
Chromosome painting of the red-handed tamarin (Saguinus midas) compared to other Callitrichinae monkeys / Stanyon, R.; Bigoni, F.; Giusti, D.; Araujo, N.B.; Svartman, M.; Phillips, D. W:. - In: GENOME. - ISSN 0831-2796. - ELETTRONICO. - 61:(2018), pp. 771-776. [10.1139/gen-2018-0119]
Chromosome painting of the red-handed tamarin (Saguinus midas) compared to other Callitrichinae monkeys
Stanyon, R.;Bigoni, F.;
2018
Abstract
Here we present, for the first time, the complete chromosome painting map of Saguinus midas, the red-handed tamarin. Chromosome banding and painting with human chromosome-specific probes were used to compare the karyotype of this species with those of four other Neotropical primates of the subfamily Callitrichinae: Leontopithecus rosalia, Callithrix geoffroyi, C. penicillata, and Mico argentatus. The chromosome painting map of S. midas was identical to that of L. rosalia and other previously studied tamarin species (genera Saguinus and Leontopithecus). The three marmoset species studied (genera Callithrix and Mico) differed in the painting pattern of four human probes (chromosomes 1, 2, 10, and 16). These paints identified the presence or absence of chromosome associations HSA 1/10 and 2/16 in these taxa. By integrating our data with those from the literature, we were able to propose an ancestral Callitrichinae karyotype. The genera Saguinus and Leontopithecus (tamarins) conserve the ancestral Callitrichinae karyotype, while Mico and Callithrix (marmosets) show more derived karyotypes due to chromosome translocations and fissions that occurred during the evolution of these taxa.I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.