The presence and accumulation of plastic waste into the marine environment are well known environmental issues. Microplastics (MPs) end up in sea waters and, due to their hydrophobicity and high surface/volume ratio, POPs tend to sorb and accumulate to their surface. The supralittoral amphipod Talitrus saltator (T. saltator) was selected to study the role of MPs in the transfer of organic pollutants and to investigate if ingested MPs could either transfer contaminants to biota or clean it adsorbing pollutants taken from the diet. T. saltator is an established POPs (Persistent Organic Pollutants) biomonitor in coastal environments and it is able to swallow microplastics in natural condition. Two laboratory experiments were performed and T. saltator was exposed to a labelled polybrominated diphenyl ether (13C-labelled BDE-47) to investigate the opposite gradient role of MPs. X Ray Micro-CT (Micro-Computed Tomography) analyses were also performed on sandhopper samples to evaluate the uptake of MPs via digestive tract. The results showed that MPs ingestion could whether transfer and remove contaminants from T. saltator, indicating a partial balance among positive and negative effects. This study has underlined MP potential double role demonstrating that MP can act both as a carrier and scavenger for the bioaccumulation of organic pollutants (i.e. PBDEs), suggesting that chemicals leaching from MPs could have a limited impact to biota.

Ingested microplastic as a two-way transporter for PBDEs in Talitrus saltator / Scopetani, C., Cincinelli, A., Martellini, T., Lombardini, E., Ciofini, A., Fortunati, A., Pasquali, V., Ciattini, S., Ugolini, A.. - In: ENVIRONMENTAL RESEARCH. - ISSN 0013-9351. - STAMPA. - 167:(2018), pp. 411-417. [10.1016/j.envres.2018.07.030]

Ingested microplastic as a two-way transporter for PBDEs in Talitrus saltator

Alessandra Cincinelli;Alberto Ugolini;
2018

Abstract

The presence and accumulation of plastic waste into the marine environment are well known environmental issues. Microplastics (MPs) end up in sea waters and, due to their hydrophobicity and high surface/volume ratio, POPs tend to sorb and accumulate to their surface. The supralittoral amphipod Talitrus saltator (T. saltator) was selected to study the role of MPs in the transfer of organic pollutants and to investigate if ingested MPs could either transfer contaminants to biota or clean it adsorbing pollutants taken from the diet. T. saltator is an established POPs (Persistent Organic Pollutants) biomonitor in coastal environments and it is able to swallow microplastics in natural condition. Two laboratory experiments were performed and T. saltator was exposed to a labelled polybrominated diphenyl ether (13C-labelled BDE-47) to investigate the opposite gradient role of MPs. X Ray Micro-CT (Micro-Computed Tomography) analyses were also performed on sandhopper samples to evaluate the uptake of MPs via digestive tract. The results showed that MPs ingestion could whether transfer and remove contaminants from T. saltator, indicating a partial balance among positive and negative effects. This study has underlined MP potential double role demonstrating that MP can act both as a carrier and scavenger for the bioaccumulation of organic pollutants (i.e. PBDEs), suggesting that chemicals leaching from MPs could have a limited impact to biota.
2018
167
411
417
Scopetani, C., Cincinelli, A., Martellini, T., Lombardini, E., Ciofini, A., Fortunati, A., Pasquali, V., Ciattini, S., Ugolini, A.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1137693
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 93
  • ???jsp.display-item.citation.isi??? 83
social impact