We prove a Hochschild-Kostant-Rosenberg decomposition theorem for smoothly compactiable smooth schemes X in characteristic p when dimX 6 p. The best known previous result of this kind, due to Yekutieli, required dimX < p. Yekutieli's result follows from the observation that the denominators appearing in the classical proof of HKR do not divide p when dimX < p. Our extension to dimX = p requires a homological fact: the Hochschild homology of a smooth proper scheme is self-dual.
A remark on the Hochschild-Kostant-Rosenberg theorem in characteristic p / gabriele vezzosi. - In: ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA. CLASSE DI SCIENZE. - ISSN 0391-173X. - STAMPA. - Vol. XX:(2020), pp. 1135-1145. [10.2422/2036-2145.201711_007]
A remark on the Hochschild-Kostant-Rosenberg theorem in characteristic p
gabriele vezzosi
2020
Abstract
We prove a Hochschild-Kostant-Rosenberg decomposition theorem for smoothly compactiable smooth schemes X in characteristic p when dimX 6 p. The best known previous result of this kind, due to Yekutieli, required dimX < p. Yekutieli's result follows from the observation that the denominators appearing in the classical proof of HKR do not divide p when dimX < p. Our extension to dimX = p requires a homological fact: the Hochschild homology of a smooth proper scheme is self-dual.File | Dimensione | Formato | |
---|---|---|---|
hkrduality.pdf
accesso aperto
Tipologia:
Versione finale referata (Postprint, Accepted manuscript)
Licenza:
Tutti i diritti riservati
Dimensione
388.29 kB
Formato
Adobe PDF
|
388.29 kB | Adobe PDF |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.