We present a smart audio guide that adapts itself to the environment the user is navigating into. The system builds automatically a point of interest database exploiting Wikipedia and Google APIs as source. We rely on a computer vision system, to overcome the likely sensor limitations, and determine with high accuracy if the user is facing a certain landmark or if he is not facing any. Thanks to this the guide presents audio description at the most appropriate moment without any user intervention, using text-to-speech augmenting the experience.

Outdoor object recognition for smart audio guides / Baecchi, Claudio; Uricchio, Tiberio; Seidenari, Lorenzo; Del Bimbo, Alberto. - ELETTRONICO. - (2017), pp. 1247-1248. (Intervento presentato al convegno 25th ACM International Conference on Multimedia, MM 2017 tenutosi a Computer History Museum, usa nel 2017) [10.1145/3123266.3127923].

Outdoor object recognition for smart audio guides

Baecchi, Claudio;Uricchio, Tiberio;Seidenari, Lorenzo;Del Bimbo, Alberto
2017

Abstract

We present a smart audio guide that adapts itself to the environment the user is navigating into. The system builds automatically a point of interest database exploiting Wikipedia and Google APIs as source. We rely on a computer vision system, to overcome the likely sensor limitations, and determine with high accuracy if the user is facing a certain landmark or if he is not facing any. Thanks to this the guide presents audio description at the most appropriate moment without any user intervention, using text-to-speech augmenting the experience.
2017
MM 2017 - Proceedings of the 2017 ACM Multimedia Conference
25th ACM International Conference on Multimedia, MM 2017
Computer History Museum, usa
2017
Baecchi, Claudio; Uricchio, Tiberio; Seidenari, Lorenzo; Del Bimbo, Alberto
File in questo prodotto:
File Dimensione Formato  
OutdoorObjectRecognitionForSmartAudioGuides.pdf

accesso aperto

Descrizione: Outdoor Object Recognition for Smart Audio Guides
Tipologia: Pdf editoriale (Version of record)
Licenza: DRM non definito
Dimensione 2.27 MB
Formato Adobe PDF
2.27 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1139122
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact