In this paper, we consider networked distributed systems in the presence of Denial-of-Service (DoS) attacks, namely attacks that prevent transmissions over the communication network. First, we consider a simple and typical scenario where communication sequence is purely Round-robin and we explicitly calculate a bound of attack frequency and duration under which the interconnected large-scale system is asymptotically stable. Second, trading-off system resilience and communication load, we design a hybrid transmission strategy consisting of Zeno-free distributed event-triggered control and Round-robin. We show that with lower communication loads, the hybrid communication strategy enables the systems to have the same resilience as in pure Round-robin.
Towards stabilization of distributed systems under denial-of-service / Feng, Shuai; Tesi, Pietro; De Persis, Claudio. - STAMPA. - 2018-:(2017), pp. 5360-5365. (Intervento presentato al convegno 56th IEEE Annual Conference on Decision and Control, CDC 2017 tenutosi a Melbourne Convention and Exhibition Centre (MCEC), aus nel 2017) [10.1109/CDC.2017.8264453].
Towards stabilization of distributed systems under denial-of-service
Tesi, Pietro;
2017
Abstract
In this paper, we consider networked distributed systems in the presence of Denial-of-Service (DoS) attacks, namely attacks that prevent transmissions over the communication network. First, we consider a simple and typical scenario where communication sequence is purely Round-robin and we explicitly calculate a bound of attack frequency and duration under which the interconnected large-scale system is asymptotically stable. Second, trading-off system resilience and communication load, we design a hybrid transmission strategy consisting of Zeno-free distributed event-triggered control and Round-robin. We show that with lower communication loads, the hybrid communication strategy enables the systems to have the same resilience as in pure Round-robin.I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.