We adopt a vierbein formalism to study pseudo-Finsler spaces modeled on a pseudo-Minkowski space. We show that it is possible to obtain closed expressions for most of the geometric objects of the theory, including Berwald's curvature, Landsberg's tensor, Douglas' curvature, nonlinear connection and Ricci scalar. These expressions are particularly convenient in computations since they factor the dependence on the base and the fiber. As an illustration, we study Lorentz-Finsler spaces modeled on the Bogoslovsky Lorentz-Minkowski space, and give sufficient conditions which guarantee the Berwald property. We then specialize to a recently proposed Finslerian pp-wave metric. Finally, the paper points out that nontrivial Berwald spaces have necessarily indicatrices which admit some nontrivial linear group of symmetries.
Pseudo-Finsler Spaces Modeled on a Pseudo-Minkowski Space / Gómez-Lobo, A. García-Parrado; Minguzzi, E.. - In: REPORTS ON MATHEMATICAL PHYSICS. - ISSN 0034-4877. - STAMPA. - 82:(2018), pp. 29-42. [10.1016/S0034-4877(18)30069-7]
Pseudo-Finsler Spaces Modeled on a Pseudo-Minkowski Space
Minguzzi, E.
2018
Abstract
We adopt a vierbein formalism to study pseudo-Finsler spaces modeled on a pseudo-Minkowski space. We show that it is possible to obtain closed expressions for most of the geometric objects of the theory, including Berwald's curvature, Landsberg's tensor, Douglas' curvature, nonlinear connection and Ricci scalar. These expressions are particularly convenient in computations since they factor the dependence on the base and the fiber. As an illustration, we study Lorentz-Finsler spaces modeled on the Bogoslovsky Lorentz-Minkowski space, and give sufficient conditions which guarantee the Berwald property. We then specialize to a recently proposed Finslerian pp-wave metric. Finally, the paper points out that nontrivial Berwald spaces have necessarily indicatrices which admit some nontrivial linear group of symmetries.I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.