Rhizobia are bacteria that can form symbiotic associations with plants of the Fabaceae family, during which they reduce atmospheric di-nitrogen to ammonia. The symbiosis between rhizobia and leguminous plants is a fundamental contributor to nitrogen cycling in natural and agricultural ecosystems. Rhizobial microsymbionts are a major reason why legumes can colonize marginal lands and nitrogen-deficient soils. Several leguminous species have been found in metal-contaminated areas, and they often harbor metal-tolerant rhizobia. In recent years, there have been numerous efforts and discoveries related to the genetic determinants of metal resistance by rhizobia, and on the effectiveness of such rhizobia to increase the metal tolerance of host plants. Here, we review the main findings on the metal resistance of rhizobia: the physiological role, evolution, and genetic determinants, and the potential to use native and genetically-manipulated rhizobia as inoculants for legumes in phytoremediation practices.
Harnessing Rhizobia to Improve Heavy-Metal Phytoremediation by Legumes / Fagorzi, Camilla; Checcucci, Alice; diCenzo, George; Debiec-Andrzejewska, Klaudia; Dziewit, Lukasz; Pini, Francesco; Mengoni, Alessio. - In: GENES. - ISSN 2073-4425. - ELETTRONICO. - 9:(2018), pp. 0-0. [10.3390/genes9110542]
Harnessing Rhizobia to Improve Heavy-Metal Phytoremediation by Legumes
Fagorzi, Camilla;Checcucci, Alice
;diCenzo, George;Pini, Francesco;Mengoni, Alessio
2018
Abstract
Rhizobia are bacteria that can form symbiotic associations with plants of the Fabaceae family, during which they reduce atmospheric di-nitrogen to ammonia. The symbiosis between rhizobia and leguminous plants is a fundamental contributor to nitrogen cycling in natural and agricultural ecosystems. Rhizobial microsymbionts are a major reason why legumes can colonize marginal lands and nitrogen-deficient soils. Several leguminous species have been found in metal-contaminated areas, and they often harbor metal-tolerant rhizobia. In recent years, there have been numerous efforts and discoveries related to the genetic determinants of metal resistance by rhizobia, and on the effectiveness of such rhizobia to increase the metal tolerance of host plants. Here, we review the main findings on the metal resistance of rhizobia: the physiological role, evolution, and genetic determinants, and the potential to use native and genetically-manipulated rhizobia as inoculants for legumes in phytoremediation practices.File | Dimensione | Formato | |
---|---|---|---|
Fagorzi et al 2018 Genes.pdf
accesso aperto
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Open Access
Dimensione
1.18 MB
Formato
Adobe PDF
|
1.18 MB | Adobe PDF |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.