Full-page (multiple-lines), electrically refreshable, portable and affordable Braille displays do not currently exist. There is a need for such an assistive technology, which could be used as the Braille-coded tactile analogue for blind people of the digital tablets used by sighted people. Turning those highly desirable systems into reality requires a radically new technology for Braille dot actuation. Here, we describe standard-sized refreshable Braille dots based on an innovative actuation technology that uses electro-responsive smart materials known as dielectric elastomers. Owing to a significantly reduced lateral size with respect to conventional Braille dot drives, the proposed solution is suitable to array multiple dots in multiple lines, so as to form full-page Braille displays. Furthermore, a significant reduction also of the vertical size makes the design suitable for the development of thin and lightweight displays, thus enabling portability. We present the first prototype samples of these new refreshable Braille dots, showing that the achievable active displacements are adequately close to the standard Braille requirements, although the force has to be further improved. The paper discusses the remaining challenges and describes promising strategies to address them.

Enabling portable multiple-line refreshable Braille displays with electroactive elastomers / Frediani, Gabriele; Busfield, James; Carpi, Federico*. - In: MEDICAL ENGINEERING & PHYSICS. - ISSN 1350-4533. - ELETTRONICO. - 60:(2018), pp. 86-93. [10.1016/j.medengphy.2018.07.012]

Enabling portable multiple-line refreshable Braille displays with electroactive elastomers

Frediani, Gabriele;Carpi, Federico
2018

Abstract

Full-page (multiple-lines), electrically refreshable, portable and affordable Braille displays do not currently exist. There is a need for such an assistive technology, which could be used as the Braille-coded tactile analogue for blind people of the digital tablets used by sighted people. Turning those highly desirable systems into reality requires a radically new technology for Braille dot actuation. Here, we describe standard-sized refreshable Braille dots based on an innovative actuation technology that uses electro-responsive smart materials known as dielectric elastomers. Owing to a significantly reduced lateral size with respect to conventional Braille dot drives, the proposed solution is suitable to array multiple dots in multiple lines, so as to form full-page Braille displays. Furthermore, a significant reduction also of the vertical size makes the design suitable for the development of thin and lightweight displays, thus enabling portability. We present the first prototype samples of these new refreshable Braille dots, showing that the achievable active displacements are adequately close to the standard Braille requirements, although the force has to be further improved. The paper discusses the remaining challenges and describes promising strategies to address them.
2018
60
86
93
Frediani, Gabriele; Busfield, James; Carpi, Federico*
File in questo prodotto:
File Dimensione Formato  
Enabling portable multiple-line refreshable Braille displays with electroactive elastomers.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 1.75 MB
Formato Adobe PDF
1.75 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1141679
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 27
social impact