The distorted tetrahedral [V(OAd)(4)] alkoxide (OAd = 1-adamantoxide, complex 1) is the first homoleptic, mononuclear vanadium(IV) alkoxide to be characterized in the solid state by X-ray diffraction analysis. The compound crystallizes in the cubic P (4) over bar 3n space group with two highly disordered, crystallographically independent molecules in the asymmetric unit. Spin Hamiltonian parameters extracted from low temperature X- and Q-band electron paramagnetic resonance (EPR) experiments performed for polycrystalline samples of 1, both in the concentrated (bulk) form and diluted in the diamagnetic [Ti(OAd)(4)] analogue, reveal a fully axial system with g(z) < g(x), g(y) and A(z) >> A(x), A(y). Complex 1 has also been characterized by alternate current susceptometry with varying temperature (3-30 K) and static magnetic field (up to 8.5 T), showing field-induced slow relaxation of the magnetization with relaxation times ranging from ca. 3 ms at 3 K to 0.02-0.03 ms at 30 K, in line with relevant results described recently for other potential molecular quantum bits. Pulsed EPR measurements, in turn, disclosed long coherence times of ca. 4 mu s at temperatures lower than 40 K, despite the presence of the H-rich ligands. The slow spin relaxation in 1 is the first observed for a tetracoordinate nonoxido vanadium(IV) complex, and results are compared here to those generated by square-pyramidal V-IV(O)(2+) and trigonal prismatic V4+ with oxygen donor atom sets. Considering that the number of promising d(1) complexes investigated in detail for slow magnetization dynamics is still small, the present work contributes to the establishment of possible structural/electronic correlations of interest to the field of quantum information processing.
A Rare Example of Four-Coordinate Nonoxido Vanadium(IV) Alkoxide in the Solid State: Structure, Spectroscopy, and Magnetization Dynamics / Stinghen, Danilo; Atzori, Matteo; Fernandes, Caprici M.; Ribeiro, Ronny R.; De Sá, Eduardo L.; Back, Davi F.; Giese, Siddhartha O. K.; Hughes, David L.; Nunes, Giovana G.; Morra, Elena; Chiesa, Mario; Sessoli, Roberta; Soares, Jaísa F.*. - In: INORGANIC CHEMISTRY. - ISSN 0020-1669. - STAMPA. - 57:(2018), pp. 11393-11403. [10.1021/acs.inorgchem.8b01117]
A Rare Example of Four-Coordinate Nonoxido Vanadium(IV) Alkoxide in the Solid State: Structure, Spectroscopy, and Magnetization Dynamics
Atzori, Matteo;Sessoli, Roberta;
2018
Abstract
The distorted tetrahedral [V(OAd)(4)] alkoxide (OAd = 1-adamantoxide, complex 1) is the first homoleptic, mononuclear vanadium(IV) alkoxide to be characterized in the solid state by X-ray diffraction analysis. The compound crystallizes in the cubic P (4) over bar 3n space group with two highly disordered, crystallographically independent molecules in the asymmetric unit. Spin Hamiltonian parameters extracted from low temperature X- and Q-band electron paramagnetic resonance (EPR) experiments performed for polycrystalline samples of 1, both in the concentrated (bulk) form and diluted in the diamagnetic [Ti(OAd)(4)] analogue, reveal a fully axial system with g(z) < g(x), g(y) and A(z) >> A(x), A(y). Complex 1 has also been characterized by alternate current susceptometry with varying temperature (3-30 K) and static magnetic field (up to 8.5 T), showing field-induced slow relaxation of the magnetization with relaxation times ranging from ca. 3 ms at 3 K to 0.02-0.03 ms at 30 K, in line with relevant results described recently for other potential molecular quantum bits. Pulsed EPR measurements, in turn, disclosed long coherence times of ca. 4 mu s at temperatures lower than 40 K, despite the presence of the H-rich ligands. The slow spin relaxation in 1 is the first observed for a tetracoordinate nonoxido vanadium(IV) complex, and results are compared here to those generated by square-pyramidal V-IV(O)(2+) and trigonal prismatic V4+ with oxygen donor atom sets. Considering that the number of promising d(1) complexes investigated in detail for slow magnetization dynamics is still small, the present work contributes to the establishment of possible structural/electronic correlations of interest to the field of quantum information processing.File | Dimensione | Formato | |
---|---|---|---|
acs.inorgchem.8b01117.pdf
Accesso chiuso
Descrizione: acs.inorgchem.8b01117
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Tutti i diritti riservati
Dimensione
1.84 MB
Formato
Adobe PDF
|
1.84 MB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.