We establish Weiss’ and Monneau’s type quasi-monotonicity formulas for quadratic energies having matrix of coefficients in a Sobolev space with summability exponent larger than the space dimension and provide an application to the corresponding free boundary analysis for the related classical obstacle problems.
Quasi-Monotonicity Formulas for Classical Obstacle Problems with Sobolev Coefficients and Applications / Matteo Focardi, Francesco Geraci, Emanuele Spadaro. - In: JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS. - ISSN 1573-2878. - STAMPA. - 184:(2020), pp. 125-138. [10.1007/s10957-018-1398-y]
Quasi-Monotonicity Formulas for Classical Obstacle Problems with Sobolev Coefficients and Applications
Matteo Focardi
;
2020
Abstract
We establish Weiss’ and Monneau’s type quasi-monotonicity formulas for quadratic energies having matrix of coefficients in a Sobolev space with summability exponent larger than the space dimension and provide an application to the corresponding free boundary analysis for the related classical obstacle problems.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Focardi-Geraci-Spadaro_JOTA-pub.pdf
Open Access dal 01/02/2021
Tipologia:
Versione finale referata (Postprint, Accepted manuscript)
Licenza:
Tutti i diritti riservati
Dimensione
516.06 kB
Formato
Adobe PDF
|
516.06 kB | Adobe PDF |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.