We establish Weiss’ and Monneau’s type quasi-monotonicity formulas for quadratic energies having matrix of coefficients in a Sobolev space with summability exponent larger than the space dimension and provide an application to the corresponding free boundary analysis for the related classical obstacle problems.

Quasi-Monotonicity Formulas for Classical Obstacle Problems with Sobolev Coefficients and Applications / Matteo Focardi, Francesco Geraci, Emanuele Spadaro. - In: JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS. - ISSN 1573-2878. - STAMPA. - 184:(2020), pp. 125-138. [10.1007/s10957-018-1398-y]

Quasi-Monotonicity Formulas for Classical Obstacle Problems with Sobolev Coefficients and Applications

Matteo Focardi
;
2020

Abstract

We establish Weiss’ and Monneau’s type quasi-monotonicity formulas for quadratic energies having matrix of coefficients in a Sobolev space with summability exponent larger than the space dimension and provide an application to the corresponding free boundary analysis for the related classical obstacle problems.
2020
184
125
138
Matteo Focardi, Francesco Geraci, Emanuele Spadaro
File in questo prodotto:
File Dimensione Formato  
Focardi-Geraci-Spadaro_JOTA-pub.pdf

Open Access dal 01/02/2021

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 516.06 kB
Formato Adobe PDF
516.06 kB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1147105
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact