In this paper we study the geometric numerical solution of the so called “good” Boussinesq equation. This goal is achieved by using a convenient space semi-discretization, able to preserve the corresponding Hamiltonian structure, then using energy-conserving Runge-Kutta methods in the HBVM class for the time integration. Numerical tests are reported, confirming the effectiveness of the proposed method.

Spectrally Accurate Energy-preserving Methods for the Numerical Solution of the “Good” Boussinesq Equation / Luigi Brugnano, Gianmarco Gurioli, Chengjian Zhang. - In: NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 0749-159X. - STAMPA. - 35:(2019), pp. 1343-1362. [10.1002/num.22353]

Spectrally Accurate Energy-preserving Methods for the Numerical Solution of the “Good” Boussinesq Equation

Luigi Brugnano
;
Gianmarco Gurioli;
2019

Abstract

In this paper we study the geometric numerical solution of the so called “good” Boussinesq equation. This goal is achieved by using a convenient space semi-discretization, able to preserve the corresponding Hamiltonian structure, then using energy-conserving Runge-Kutta methods in the HBVM class for the time integration. Numerical tests are reported, confirming the effectiveness of the proposed method.
2019
35
1343
1362
Luigi Brugnano, Gianmarco Gurioli, Chengjian Zhang
File in questo prodotto:
File Dimensione Formato  
GBE2.pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 632.06 kB
Formato Adobe PDF
632.06 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1147217
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 17
social impact