The temporal evolution of entanglement between a noisy system and an ancillary system is analyzed in the context of continuous-time open quantum system dynamics. Focusing on a couple of analytically solvable models for qubit systems, we study how Markovian and non-Markovian characteristics influence the problem, discussing in particular their associated entanglement-breaking regimes. These performances are compared with those one could achieve when the environment of the system is forced to return to its input configuration via periodic instantaneous resetting procedures.
Entanglement protection via periodic environment resetting in continuous-time quantum-dynamical processes / ANTONELLA DE PASQUALE. - In: PHYSICAL REVIEW. A. - ISSN 2469-9934. - ELETTRONICO. - 98:(2018), pp. 0-0. [10.1103/PhysRevA.98.042301]
Entanglement protection via periodic environment resetting in continuous-time quantum-dynamical processes
DE PASQUALE, ANTONELLA;
2018
Abstract
The temporal evolution of entanglement between a noisy system and an ancillary system is analyzed in the context of continuous-time open quantum system dynamics. Focusing on a couple of analytically solvable models for qubit systems, we study how Markovian and non-Markovian characteristics influence the problem, discussing in particular their associated entanglement-breaking regimes. These performances are compared with those one could achieve when the environment of the system is forced to return to its input configuration via periodic instantaneous resetting procedures.File | Dimensione | Formato | |
---|---|---|---|
Non_MarkovianEB_PhysRevA.98.042301.pdf
accesso aperto
Descrizione: Pdf articolo pubblicato su rivista
Tipologia:
Versione finale referata (Postprint, Accepted manuscript)
Licenza:
Tutti i diritti riservati
Dimensione
679.05 kB
Formato
Adobe PDF
|
679.05 kB | Adobe PDF | |
Non_MarkovianEB_PhysRevA.98.042301.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Tutti i diritti riservati
Dimensione
679.05 kB
Formato
Adobe PDF
|
679.05 kB | Adobe PDF |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.