The Clausius inequality has deep implications for reversibility and the arrow of time. Quantum theory is able to extend this result for closed systems by inspecting the trajectory of the density matrix on its manifold. Here we show that this approach can provide an upper and lower bound to the irreversible entropy production for open quantum systems as well. These provide insights on how the information on the initial state is forgotten through a thermalization process. Limits of the applicability of our bounds are discussed and demonstrated in a quantum photonic simulator.

Geometrical Bounds on Irreversibility in Open Quantum Systems / Mancino, Luca; Cavina, Vasco; De Pasquale, Antonella; Sbroscia, Marco; Booth, Robert I; Roccia, Emanuele; Gianani, Ilaria; Giovannetti, Vittorio; Barbieri, Marco. - In: PHYSICAL REVIEW LETTERS. - ISSN 0031-9007. - ELETTRONICO. - 121:(2018), pp. 160602-160602. [10.1103/PhysRevLett.121.160602]

Geometrical Bounds on Irreversibility in Open Quantum Systems

De Pasquale, Antonella;
2018

Abstract

The Clausius inequality has deep implications for reversibility and the arrow of time. Quantum theory is able to extend this result for closed systems by inspecting the trajectory of the density matrix on its manifold. Here we show that this approach can provide an upper and lower bound to the irreversible entropy production for open quantum systems as well. These provide insights on how the information on the initial state is forgotten through a thermalization process. Limits of the applicability of our bounds are discussed and demonstrated in a quantum photonic simulator.
2018
121
160602
160602
Mancino, Luca; Cavina, Vasco; De Pasquale, Antonella; Sbroscia, Marco; Booth, Robert I; Roccia, Emanuele; Gianani, Ilaria; Giovannetti, Vittorio; Barb...espandi
File in questo prodotto:
File Dimensione Formato  
IrrevEntropy_PhysRevLett.121.160602.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 1.09 MB
Formato Adobe PDF
1.09 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1147601
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 23
social impact