Anomaly detection algorithms aim at identifying unexpected flctuations in the exp e cte d b ehavior of target indicators, and, when applie d to intrusion dete ction, susp e ct attacks whenever the above deviations are obser ve d. Through years, several of such algorithms have b e en prop ose d, evaluate d exp erimentally, and analyzed in qualitative and quantitative sur veys. However, the exp erimental comparison of a comprehensive set of algorithms for anomaly-based intrusion dete ction against a comprehensive set of attacks datasets and attack typ es was not investigate d yet. To fil such gap, in th is pap er we exp erimentally evaluate a p o ol of twelve unsup er vise d anomaly dete ction algorithms on fie attacks datasets. Results allow elaborating on a wide range of arguments, from the b ehavior of the individual algorithm to the suitability of the datasets to anomaly detection. We identify the families of algorithms that are more eff ctive for intrusion dete ction, and the families that are more robust to the choice of confiuration parameters. Further, we confim exp erimentally that attacks with unstable and non-rep eatable b ehavior are more diffilt to dete ct, and that datasets where anomalies are rare events usually result in b etter dete ction scores.

Quantitative Comparison of Unsupervised Anomaly Detection Algorithms for Intrusion Detection / Filipe Falcao, Tommaso Zoppi, Caio Barbosa, Anderson Santos, Baldoino Fonseca, Andrea Ceccarelli, Andrea Bondavalli. - ELETTRONICO. - (2019), pp. 318-327. (Intervento presentato al convegno ACM SYMPOSIUM ON APPLIED COMPUTING tenutosi a Limassol, Cyprus nel 8-12/4/2019) [10.1145/3297280.3297314].

Quantitative Comparison of Unsupervised Anomaly Detection Algorithms for Intrusion Detection

Falcão Batista dos Santos, FILIPE;Tommaso Zoppi
;
BARBOSA VIEIRA DA SILVA, CAIO;SANTOS DA SILVA, ANDERSON;FONSECA DOS SANTOS NETO, BALDOINO;Andrea Ceccarelli;Andrea Bondavalli
2019

Abstract

Anomaly detection algorithms aim at identifying unexpected flctuations in the exp e cte d b ehavior of target indicators, and, when applie d to intrusion dete ction, susp e ct attacks whenever the above deviations are obser ve d. Through years, several of such algorithms have b e en prop ose d, evaluate d exp erimentally, and analyzed in qualitative and quantitative sur veys. However, the exp erimental comparison of a comprehensive set of algorithms for anomaly-based intrusion dete ction against a comprehensive set of attacks datasets and attack typ es was not investigate d yet. To fil such gap, in th is pap er we exp erimentally evaluate a p o ol of twelve unsup er vise d anomaly dete ction algorithms on fie attacks datasets. Results allow elaborating on a wide range of arguments, from the b ehavior of the individual algorithm to the suitability of the datasets to anomaly detection. We identify the families of algorithms that are more eff ctive for intrusion dete ction, and the families that are more robust to the choice of confiuration parameters. Further, we confim exp erimentally that attacks with unstable and non-rep eatable b ehavior are more diffilt to dete ct, and that datasets where anomalies are rare events usually result in b etter dete ction scores.
2019
Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing
ACM SYMPOSIUM ON APPLIED COMPUTING
Limassol, Cyprus
8-12/4/2019
Filipe Falcao, Tommaso Zoppi, Caio Barbosa, Anderson Santos, Baldoino Fonseca, Andrea Ceccarelli, Andrea Bondavalli
File in questo prodotto:
File Dimensione Formato  
3297280.3297314.pdf

Accesso chiuso

Descrizione: File Editore non Pubblico
Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 1.1 MB
Formato Adobe PDF
1.1 MB Adobe PDF   Richiedi una copia
SAC_CameraReady.pdf

accesso aperto

Descrizione: Pre-Print accesso libero
Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 456.54 kB
Formato Adobe PDF
456.54 kB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1149509
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 39
  • ???jsp.display-item.citation.isi??? 33
social impact