In this paper, we report on recent findings in the numerical solution of Hamiltonian Partial Differential Equations (PDEs) by using energy-conserving line integral methods in the Hamiltonian Boundary Value Methods (HBVMs) class. In particular, we consider the semilinear wave equation, the nonlinear Schrödinger equation, and the Korteweg–de Vries equation, to illustrate the main features of this novel approach.
Line Integral Solution of Hamiltonian PDEs / L.Brugnano, G. Frasca Caccia, F.Iavernaro. - In: MATHEMATICS. - ISSN 2227-7390. - ELETTRONICO. - 7:(2019), pp. 1-28. [10.3390/math7030275]
Line Integral Solution of Hamiltonian PDEs
L. Brugnano
;
2019
Abstract
In this paper, we report on recent findings in the numerical solution of Hamiltonian Partial Differential Equations (PDEs) by using energy-conserving line integral methods in the Hamiltonian Boundary Value Methods (HBVMs) class. In particular, we consider the semilinear wave equation, the nonlinear Schrödinger equation, and the Korteweg–de Vries equation, to illustrate the main features of this novel approach.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
mathematics-07-00275.pdf
accesso aperto
Descrizione: pdf editoriale
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Open Access
Dimensione
1.4 MB
Formato
Adobe PDF
|
1.4 MB | Adobe PDF |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.



