In this paper, we report on recent findings in the numerical solution of Hamiltonian Partial Differential Equations (PDEs) by using energy-conserving line integral methods in the Hamiltonian Boundary Value Methods (HBVMs) class. In particular, we consider the semilinear wave equation, the nonlinear Schrödinger equation, and the Korteweg–de Vries equation, to illustrate the main features of this novel approach.

Line Integral Solution of Hamiltonian PDEs / L.Brugnano, G. Frasca Caccia, F.Iavernaro. - In: MATHEMATICS. - ISSN 2227-7390. - ELETTRONICO. - 7:(2019), pp. 1-28. [10.3390/math7030275]

Line Integral Solution of Hamiltonian PDEs

L. Brugnano
;
2019

Abstract

In this paper, we report on recent findings in the numerical solution of Hamiltonian Partial Differential Equations (PDEs) by using energy-conserving line integral methods in the Hamiltonian Boundary Value Methods (HBVMs) class. In particular, we consider the semilinear wave equation, the nonlinear Schrödinger equation, and the Korteweg–de Vries equation, to illustrate the main features of this novel approach.
2019
7
1
28
L.Brugnano, G. Frasca Caccia, F.Iavernaro
File in questo prodotto:
File Dimensione Formato  
mathematics-07-00275.pdf

accesso aperto

Descrizione: pdf editoriale
Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 1.4 MB
Formato Adobe PDF
1.4 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1151146
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 13
social impact