Brain atrophy as measured from structural MR images, is one of the primary imaging biomarkers used to track neurodegenerative disease progression. In diseases such as frontotemporal dementia or Alzheimer's disease, atrophy can be observed in key brain structures years before any clinical symptoms are present. Atrophy is most commonly captured as volume change of key structures and the shape changes of these structures are typically not analysed despite being potentially more sensitive than summary volume statistics over the entire structure. In this paper we propose a spatiotemporal analysis pipeline based on Large Diffeomorphic Deformation Metric Mapping (LDDMM) to detect shape changes from volumetric MRI scans. We applied our framework to a cohort of individuals with genetic variants of frontotemporal dementia and healthy controls from the Genetic FTD Initiative (GENFI) study. Our method, take full advantage of the LDDMM framework, and relies on the creation of a population specific average spatiotemporal trajectory of a relevant brain structure of interest, the thalamus in our case. The residuals from each patient data to the average spatiotemporal trajectory are then clustered and studied to assess when presymptomatic mutation carriers differ from healthy control subjects. We found statistical differences in shape in the anterior region of the thalamus at least five years before the mutation carrier subjects develop any clinical symptoms. This region of the thalamus has been shown to be predominantly connected to the frontal lobe, consistent with the pattern of cortical atrophy seen in the disease

Spatiotemporal analysis for detection of pre-symptomatic shape changes in neurodegenerative diseases: Initial application to the GENFI cohort / Cury, Claire; Durrleman, Stanley; Cash, David M.; Lorenzi, Marco; Nicholas, Jennifer M.; Bocchetta, Martina; van Swieten, John C.; Borroni, Barbara; Galimberti, Daniela; Masellis, Mario; Tartaglia, Maria Carmela; Rowe, James B.; Graff, Caroline; Tagliavini, Fabrizio; Frisoni, Giovanni B.; Laforce, Robert; Finger, Elizabeth; de Mendonça, Alexandre; Sorbi, Sandro; Ourselin, Sebastien; Rohrer, Jonathan D.; Modat, Marc; Andersson, Christin; Archetti, Silvana; Arighi, Andrea; Benussi, Luisa; Black, Sandra; Cosseddu, Maura; Fallstrm, Marie; Ferreira, Carlos; Fenoglio, Chiara; Fox, Nick; Freedman, Morris; Fumagalli, Giorgio; Gazzina, Stefano; Ghidoni, Roberta; Grisoli, Marina; Jelic, Vesna; Jiskoot, Lize; Keren, Ron; Lombardi, Gemma; Maruta, Carolina; Meeter, Lieke; van Minkelen, Rick; Nacmias, Benedetta; ijerstedt, Linn; Padovani, Alessandro; Panman, Jessica; Pievani, Michela; Polito, Cristina; Premi, Enrico; Prioni, Sara; Rademakers, Rosa; Redaelli, Veronica; Rogaeva, Ekaterina; Rossi, Giacomina; Rossor, Martin; Scarpini, Elio; Tang-Wai, David; Tartaglia, Carmela; Thonberg, Hakan; Tiraboschi, Pietro; Verdelho, Ana; Warren, Jason. - In: NEUROIMAGE. - ISSN 1053-8119. - STAMPA. - 188:(2019), pp. 282-290. [10.1016/j.neuroimage.2018.11.063]

Spatiotemporal analysis for detection of pre-symptomatic shape changes in neurodegenerative diseases: Initial application to the GENFI cohort

Sorbi, Sandro;Fumagalli, Giorgio;Lombardi, Gemma;Nacmias, Benedetta;Polito, Cristina;
2019

Abstract

Brain atrophy as measured from structural MR images, is one of the primary imaging biomarkers used to track neurodegenerative disease progression. In diseases such as frontotemporal dementia or Alzheimer's disease, atrophy can be observed in key brain structures years before any clinical symptoms are present. Atrophy is most commonly captured as volume change of key structures and the shape changes of these structures are typically not analysed despite being potentially more sensitive than summary volume statistics over the entire structure. In this paper we propose a spatiotemporal analysis pipeline based on Large Diffeomorphic Deformation Metric Mapping (LDDMM) to detect shape changes from volumetric MRI scans. We applied our framework to a cohort of individuals with genetic variants of frontotemporal dementia and healthy controls from the Genetic FTD Initiative (GENFI) study. Our method, take full advantage of the LDDMM framework, and relies on the creation of a population specific average spatiotemporal trajectory of a relevant brain structure of interest, the thalamus in our case. The residuals from each patient data to the average spatiotemporal trajectory are then clustered and studied to assess when presymptomatic mutation carriers differ from healthy control subjects. We found statistical differences in shape in the anterior region of the thalamus at least five years before the mutation carrier subjects develop any clinical symptoms. This region of the thalamus has been shown to be predominantly connected to the frontal lobe, consistent with the pattern of cortical atrophy seen in the disease
2019
188
282
290
Cury, Claire; Durrleman, Stanley; Cash, David M.; Lorenzi, Marco; Nicholas, Jennifer M.; Bocchetta, Martina; van Swieten, John C.; Borroni, Barbara; G...espandi
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S105381191832144X-main.pdf

accesso aperto

Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 1.25 MB
Formato Adobe PDF
1.25 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1151314
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 15
social impact