This paper presents a case study describing a full-scale membrane bioreactor (MBR) for the pretreatment of landfill leachates. The treatment train includes an aerated equalization tank, a denitrification tank, an oxidation/nitrification tank, and two ultrafiltration units. The plant has worked continuously since 2008 treating landfill leachates at a flux of 2–11 L·h−1·m−2. The old train of membranes worked in these conditions for more than seven years prior to being damaged and replaced. The permeability (K) of the membrane varied between 30 and 80 L·h−1·m−2·bar−1 during the years of operation. In 2010, after two years of operation, the oxidation/nitrification tank was changed to work in alternate cycles of aerated and anoxic conditions, in order to improve the denitrification process. The MBR, working at a mean sludge retention time of 144 days and with mixed liquor suspended solids of 17 g/L, achieved high removal rates of conventional contaminants, with more than 98% for Biochemical Oxygen Demand, 96% for ammonium, and 75% for Chemical Oxygen Demand (COD). From the COD balance, half the COD entering was determined to be biologically oxidized into carbon dioxide, while another 24% remains in the sludge. In order to obtain these results, the company used 5.2 KWh·m−3, while spending 0.79 €·m−3.

Long-term performance of a full-scale membrane plant for landfill leachate pretreatment: A case study / Coppini, Ester; Palli, Laura*; Fibbi, Donatella; Gori, Riccardo. - In: MEMBRANES. - ISSN 2077-0375. - ELETTRONICO. - 8:(2018), pp. 52-61. [10.3390/membranes8030052]

Long-term performance of a full-scale membrane plant for landfill leachate pretreatment: A case study

Palli, Laura
Writing – Original Draft Preparation
;
Fibbi, Donatella
Writing – Review & Editing
;
Gori, Riccardo
Writing – Review & Editing
2018

Abstract

This paper presents a case study describing a full-scale membrane bioreactor (MBR) for the pretreatment of landfill leachates. The treatment train includes an aerated equalization tank, a denitrification tank, an oxidation/nitrification tank, and two ultrafiltration units. The plant has worked continuously since 2008 treating landfill leachates at a flux of 2–11 L·h−1·m−2. The old train of membranes worked in these conditions for more than seven years prior to being damaged and replaced. The permeability (K) of the membrane varied between 30 and 80 L·h−1·m−2·bar−1 during the years of operation. In 2010, after two years of operation, the oxidation/nitrification tank was changed to work in alternate cycles of aerated and anoxic conditions, in order to improve the denitrification process. The MBR, working at a mean sludge retention time of 144 days and with mixed liquor suspended solids of 17 g/L, achieved high removal rates of conventional contaminants, with more than 98% for Biochemical Oxygen Demand, 96% for ammonium, and 75% for Chemical Oxygen Demand (COD). From the COD balance, half the COD entering was determined to be biologically oxidized into carbon dioxide, while another 24% remains in the sludge. In order to obtain these results, the company used 5.2 KWh·m−3, while spending 0.79 €·m−3.
2018
8
52
61
Coppini, Ester; Palli, Laura*; Fibbi, Donatella; Gori, Riccardo
File in questo prodotto:
File Dimensione Formato  
Long term performance of a full scale membrane plant for landifll leachate pretreatment.pdf

accesso aperto

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Open Access
Dimensione 2.96 MB
Formato Adobe PDF
2.96 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1151558
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 12
social impact