Hyperpolarization-activated cation channels are involved, among other functions, in learning and memory, control of synaptic transmission and epileptogenesis. The importance of the HCN1 and HCN2 isoforms for brain function has been demonstrated, while the role of HCN4, the third major neuronal HCN subunit, is not known. Here we show that HCN4 is essential for oscillatory activity in the thalamocortical (TC) network. HCN4 is selectively expressed in various thalamic nuclei, excluding the thalamic reticular nucleus. HCN4-deficient TC neurons revealed a massive reduction of Ih and strongly reduced intrinsic burst firing, whereas the current was normal in cortical pyramidal neurons. In addition, evoked bursting in a thalamic slice preparation was strongly reduced in the mutant mice probes. HCN4-deficiency also significantly slowed down thalamic and cortical oscillations during active wakefulness. Taken together, these results establish that thalamic HCN4 channels are essential for the production of rhythmic intrathalamic oscillations and determine regular TC oscillatory activity during alert states.

The hyperpolarization-activated HCN4 channel is Important for proper maintenance of oscillatory activity in the thalamocortical system / Mehrnoush Zobeiri, Rahul Chaudhary, Anne Blaich, Matthias Rottmann, Stefan Herrmann, Patrick Meuth, Pawan Bista, Tatyana Kanyshkova, Annika Lüttjohann, Venu Narayanan, Petra Hundehege, Sven G. Meuth, Maria Novella Romanelli, Francisco J. Urbano, Hans-Christian Pape, Thomas Budde, Andreas Ludwig. - In: CEREBRAL CORTEX. - ISSN 1460-2199. - STAMPA. - (2019), pp. 1-14. [10.1093/cercor/bhz047]

The hyperpolarization-activated HCN4 channel is Important for proper maintenance of oscillatory activity in the thalamocortical system

Maria Novella Romanelli;
2019

Abstract

Hyperpolarization-activated cation channels are involved, among other functions, in learning and memory, control of synaptic transmission and epileptogenesis. The importance of the HCN1 and HCN2 isoforms for brain function has been demonstrated, while the role of HCN4, the third major neuronal HCN subunit, is not known. Here we show that HCN4 is essential for oscillatory activity in the thalamocortical (TC) network. HCN4 is selectively expressed in various thalamic nuclei, excluding the thalamic reticular nucleus. HCN4-deficient TC neurons revealed a massive reduction of Ih and strongly reduced intrinsic burst firing, whereas the current was normal in cortical pyramidal neurons. In addition, evoked bursting in a thalamic slice preparation was strongly reduced in the mutant mice probes. HCN4-deficiency also significantly slowed down thalamic and cortical oscillations during active wakefulness. Taken together, these results establish that thalamic HCN4 channels are essential for the production of rhythmic intrathalamic oscillations and determine regular TC oscillatory activity during alert states.
2019
1
14
Goal 3: Good health and well-being for people
Mehrnoush Zobeiri, Rahul Chaudhary, Anne Blaich, Matthias Rottmann, Stefan Herrmann, Patrick Meuth, Pawan Bista, Tatyana Kanyshkova, Annika Lüttjohann...espandi
File in questo prodotto:
File Dimensione Formato  
130_CerebCortex2019.pdf

accesso aperto

Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 993.95 kB
Formato Adobe PDF
993.95 kB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1151826
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 42
  • ???jsp.display-item.citation.isi??? 41
social impact