Aeration is an essential component of aerobic biological wastewater treatment and is the largest energy consumer at most water resource recovery facilities. Most modelling studies neglect the inherent complexity of the aeration systems used. Typically, the blowers, air piping, and diffusers are not modelled in detail, completely mixed reactors in a series are used to represent plug-flow reactors, and empirical correlations are used to describe the impact of operating conditions on bubble formation and transport, and oxygen transfer from the bubbles to the bulk liquid. However, the mechanisms involved are very complex in nature and require significant research efforts. This contribution highlights why and where there is a need for more detail in the different aspects of the aeration system and compiles recent efforts to develop physical models of the entire aeration system (blower, valves, air piping and diffusers), as well as adding rigour to the oxygen transfer efficiency modelling (impact of viscosity, bubble size distribution, shear and hydrodynamics). As a result of these model extensions, more realistic predictions of dissolved oxygen profiles and energy consumption have been achieved. Finally, the current needs for further model development are highlighted.

Towards advanced aeration modelling: From blower to bubbles to bulk / Amaral, Andreia; Schraa, Oliver; Rieger, Leiv; Gillot, Sylvie; Fayolle, Yannick; Bellandi, Giacomo; Amerlinck, Youri; Mortier, Séverine T. F. C.; Gori, Riccardo; Neves, Ramiro; Nopens, Ingmar. - In: WATER SCIENCE AND TECHNOLOGY. - ISSN 0273-1223. - STAMPA. - 75:(2017), pp. 507-517. [10.2166/wst.2016.365]

Towards advanced aeration modelling: From blower to bubbles to bulk

Bellandi, Giacomo
Writing – Review & Editing
;
Gori, Riccardo
Writing – Review & Editing
;
2017

Abstract

Aeration is an essential component of aerobic biological wastewater treatment and is the largest energy consumer at most water resource recovery facilities. Most modelling studies neglect the inherent complexity of the aeration systems used. Typically, the blowers, air piping, and diffusers are not modelled in detail, completely mixed reactors in a series are used to represent plug-flow reactors, and empirical correlations are used to describe the impact of operating conditions on bubble formation and transport, and oxygen transfer from the bubbles to the bulk liquid. However, the mechanisms involved are very complex in nature and require significant research efforts. This contribution highlights why and where there is a need for more detail in the different aspects of the aeration system and compiles recent efforts to develop physical models of the entire aeration system (blower, valves, air piping and diffusers), as well as adding rigour to the oxygen transfer efficiency modelling (impact of viscosity, bubble size distribution, shear and hydrodynamics). As a result of these model extensions, more realistic predictions of dissolved oxygen profiles and energy consumption have been achieved. Finally, the current needs for further model development are highlighted.
2017
75
507
517
Amaral, Andreia; Schraa, Oliver; Rieger, Leiv; Gillot, Sylvie; Fayolle, Yannick; Bellandi, Giacomo; Amerlinck, Youri; Mortier, Séverine T. F. C.; Gori...espandi
File in questo prodotto:
File Dimensione Formato  
WWTmod2016_towards_advanced_aeration_modelling_WST_final_black_and_white.pdf

Accesso chiuso

Descrizione: Versione pre-referaggio
Tipologia: Altro
Licenza: Tutti i diritti riservati
Dimensione 1.33 MB
Formato Adobe PDF
1.33 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1152988
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 25
social impact