In this paper we consider the inverse problem of determining a rigid inclusion inside a thin plate by applying a couple field at the boundary and by measuring the induced transversal displacement and its normal derivative at the boundary of the plate. The plate is made by non-homogeneous, linearly elastic, and isotropic material. Under suitable a priori regularity assumptions on the boundary of the inclusion, we prove a constructive stability estimate of log type. A key mathematical tool is a recently proved optimal three-spheres inequality at the boundary for solutions to the Kirchhoff-Love plate's equation.

OPTIMAL STABILITY IN THE IDENTIFICATION OF A RIGID INCLUSION IN AN ISOTROPIC KIRCHHOFF-LOVE PLATE / Morassi, A ; Rosset, E ; Vessella, S. - In: SIAM JOURNAL ON MATHEMATICAL ANALYSIS. - ISSN 0036-1410. - STAMPA. - 51:(2019), pp. 731-747. [10.1137/18M1203286]

OPTIMAL STABILITY IN THE IDENTIFICATION OF A RIGID INCLUSION IN AN ISOTROPIC KIRCHHOFF-LOVE PLATE

Vessella, S
2019

Abstract

In this paper we consider the inverse problem of determining a rigid inclusion inside a thin plate by applying a couple field at the boundary and by measuring the induced transversal displacement and its normal derivative at the boundary of the plate. The plate is made by non-homogeneous, linearly elastic, and isotropic material. Under suitable a priori regularity assumptions on the boundary of the inclusion, we prove a constructive stability estimate of log type. A key mathematical tool is a recently proved optimal three-spheres inequality at the boundary for solutions to the Kirchhoff-Love plate's equation.
2019
51
731
747
Goal 17: Partnerships for the goals
Morassi, A ; Rosset, E ; Vessella, S
File in questo prodotto:
File Dimensione Formato  
MRV_optimal-plate-stability-2019.pdf

Accesso chiuso

Descrizione: file pdf
Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 429.44 kB
Formato Adobe PDF
429.44 kB Adobe PDF   Richiedi una copia
2-MRV_optimal-plate-stability-2019_versione-referata.pdf

accesso aperto

Descrizione: pdf
Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 330.04 kB
Formato Adobe PDF
330.04 kB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1154171
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 8
social impact