A granular sequencing batch reactor (GSBR) worked for 164 days to study the effect of salinity on aerobic granulation. The feeding had an organic loading rate (OLR) of 1.6 kg COD⋅m−3⋅d−1 and a gradual increase of salinity (from 0.30 to 38 g NaCl−⋅L−1) to promote a biological salt-adaptation. First aggregates (average diameter ≈ 0.4 mm) appeared after 14 days. Extracellular polymeric substances (EPSs) analyses revealed that proteins were mainly higher than polysaccharides, and microorganisms metabolized EPSs as additional carbon source, mostly in feast phase, to face the energy demand for salinity adaptation. No significant worsening of organic matter removal was observed. The initial decrease of nitrification (from 58% to 15%) and the subsequent increase (up to 25%), confirmed the acclimation of AOBs to saline environment, while the accumulation of nitrites suggested NOBs inhibition. The nitrogen removal initially decreased from 58% to 15%, due to the inhibitory effect of salinity, and subsequently increased up to 29% denoting a simultaneous nitrification–denitrification. The dimensions of mature granules (higher than 1 mm) probably involved PAOs growth in the inner anaerobic layers. Nitrites caused a temporary deterioration of phosphorous removal (from 60% to almost zero), that increased up to 25% when nitrites were depleted.

The role of extracellular polymeric substances on aerobic granulation with stepwise increase of salinity / Campo, Riccardo*; Corsino, Santo Fabio; Torregrossa, Michele; Di Bella, Gaetano. - In: SEPARATION AND PURIFICATION TECHNOLOGY. - ISSN 1383-5866. - ELETTRONICO. - 195:(2018), pp. 12-20. [10.1016/j.seppur.2017.11.074]

The role of extracellular polymeric substances on aerobic granulation with stepwise increase of salinity

Campo, Riccardo
;
2018

Abstract

A granular sequencing batch reactor (GSBR) worked for 164 days to study the effect of salinity on aerobic granulation. The feeding had an organic loading rate (OLR) of 1.6 kg COD⋅m−3⋅d−1 and a gradual increase of salinity (from 0.30 to 38 g NaCl−⋅L−1) to promote a biological salt-adaptation. First aggregates (average diameter ≈ 0.4 mm) appeared after 14 days. Extracellular polymeric substances (EPSs) analyses revealed that proteins were mainly higher than polysaccharides, and microorganisms metabolized EPSs as additional carbon source, mostly in feast phase, to face the energy demand for salinity adaptation. No significant worsening of organic matter removal was observed. The initial decrease of nitrification (from 58% to 15%) and the subsequent increase (up to 25%), confirmed the acclimation of AOBs to saline environment, while the accumulation of nitrites suggested NOBs inhibition. The nitrogen removal initially decreased from 58% to 15%, due to the inhibitory effect of salinity, and subsequently increased up to 29% denoting a simultaneous nitrification–denitrification. The dimensions of mature granules (higher than 1 mm) probably involved PAOs growth in the inner anaerobic layers. Nitrites caused a temporary deterioration of phosphorous removal (from 60% to almost zero), that increased up to 25% when nitrites were depleted.
2018
195
12
20
Campo, Riccardo*; Corsino, Santo Fabio; Torregrossa, Michele; Di Bella, Gaetano
File in questo prodotto:
File Dimensione Formato  
Revised_Manuscript_SEPPUR_IRIS.pdf

accesso aperto

Descrizione: Bozza finale post-referaggio
Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Creative commons
Dimensione 923.39 kB
Formato Adobe PDF
923.39 kB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1154199
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 60
  • ???jsp.display-item.citation.isi??? 54
social impact