We report the first natural occurrence and single-crystal X‑ray diffraction study of the Fe-analog of wadsleyite [a = 5.7485(4), b = 11.5761(9), c = 8.3630(7) Å, V = 556.52(7) Å3; space group Imma], spinelloid-structured Fe2SiO4, a missing phase among the predicted high-pressure polymorphs of ferroan olivine, with the composition (Fe2+1.10Mg0.80Cr3+0.04Mn2+0.02Ca0.02Al0.02Na0.01)Σ2.01(Si0.97Al0.03)Σ1.00O4. The new mineral was approved by the International Mineralogical Association (No. 2018-102) and named asimowite in honor of Paul D. Asimow, the Eleanor and John R. McMillan Professor of Geology and Geochemistry at the California Institute of Technology. It was discovered in rare shock-melted silicate droplets embedded in Fe,Ni-metal in both the Suizhou L6 chondrite and the Quebrada Chimborazo (QC) 001 CB3.0 chondrite. Asimowite is rare, but the shock-melted silicate droplets are very frequent in both meteorites, and most of them contain Fe-rich wadsleyite (Fa30–45). Although the existence of such Fe-rich wadsleyite in shock veins may be due to the kinetic reasons, new theoretical and experimental studies of the stability of (Fe,Mg)2SiO4 at high temperature (>1800 K) and pressure are clearly needed. This may also have a significant impact on the temperature and chemical estimates of the mantle’s transition zone in Earth.

Discovery of asimowite, the Fe-analog of wadsleyite, in shock-melted silicate droplets of the Suizhou L6 and the Quebrada Chimborazo 001 CB3.0 chondrites / Luca Bindi. - In: AMERICAN MINERALOGIST. - ISSN 0003-004X. - STAMPA. - 104:(2019), pp. 775-778.

Discovery of asimowite, the Fe-analog of wadsleyite, in shock-melted silicate droplets of the Suizhou L6 and the Quebrada Chimborazo 001 CB3.0 chondrites

Luca Bindi
2019

Abstract

We report the first natural occurrence and single-crystal X‑ray diffraction study of the Fe-analog of wadsleyite [a = 5.7485(4), b = 11.5761(9), c = 8.3630(7) Å, V = 556.52(7) Å3; space group Imma], spinelloid-structured Fe2SiO4, a missing phase among the predicted high-pressure polymorphs of ferroan olivine, with the composition (Fe2+1.10Mg0.80Cr3+0.04Mn2+0.02Ca0.02Al0.02Na0.01)Σ2.01(Si0.97Al0.03)Σ1.00O4. The new mineral was approved by the International Mineralogical Association (No. 2018-102) and named asimowite in honor of Paul D. Asimow, the Eleanor and John R. McMillan Professor of Geology and Geochemistry at the California Institute of Technology. It was discovered in rare shock-melted silicate droplets embedded in Fe,Ni-metal in both the Suizhou L6 chondrite and the Quebrada Chimborazo (QC) 001 CB3.0 chondrite. Asimowite is rare, but the shock-melted silicate droplets are very frequent in both meteorites, and most of them contain Fe-rich wadsleyite (Fa30–45). Although the existence of such Fe-rich wadsleyite in shock veins may be due to the kinetic reasons, new theoretical and experimental studies of the stability of (Fe,Mg)2SiO4 at high temperature (>1800 K) and pressure are clearly needed. This may also have a significant impact on the temperature and chemical estimates of the mantle’s transition zone in Earth.
2019
104
775
778
Luca Bindi
File in questo prodotto:
File Dimensione Formato  
asimowite.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 649.44 kB
Formato Adobe PDF
649.44 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1154352
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 22
social impact