We prove the existence of a Galois closure for towers of torsors under finite group schemes over a proper, geometrically connected and geometrically reduced algebraic stack $X$ over a field $k$. This is done by describing the Nori fundamental gerbe of an essentially finite cover of $X$. A similar result is also obtained for the $S$-fundamental gerbe.

Nori fundamental gerbe of essentially finite covers and Galois closure of towers of torsors / Fabio Tonini, MARCO ANTEI, INDRANIL BISWAS, MICHEL EMSALEM, LEI ZHANG. - In: SELECTA MATHEMATICA. NEW SERIES. - ISSN 1420-9020. - ELETTRONICO. - (2019), pp. 0-34. [10.1007/s00029-019-0449-z]

Nori fundamental gerbe of essentially finite covers and Galois closure of towers of torsors

Fabio Tonini;
2019

Abstract

We prove the existence of a Galois closure for towers of torsors under finite group schemes over a proper, geometrically connected and geometrically reduced algebraic stack $X$ over a field $k$. This is done by describing the Nori fundamental gerbe of an essentially finite cover of $X$. A similar result is also obtained for the $S$-fundamental gerbe.
2019
0
34
Fabio Tonini, MARCO ANTEI, INDRANIL BISWAS, MICHEL EMSALEM, LEI ZHANG
File in questo prodotto:
File Dimensione Formato  
Nori fundamental gerbe of essentially finite covers and Galois closure of towers of torsors.pdf

accesso aperto

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 599.51 kB
Formato Adobe PDF
599.51 kB Adobe PDF
Springer Final Version.pdf.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 504.72 kB
Formato Adobe PDF
504.72 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1156900
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact