The composition and turnover time (TT) of organic matter in soil fractions with different magnetic susceptibility were studied in a tropical primary forest in Ghana. The starting hypothesis was that soil organic matter (SOM) composition and properties depend on the magnetic susceptibility of the minerals SOM is associated with. Soil samples from 0 to 5, 5–15, 15–30, and 30–50 cm depth intervals were sieved to remove rock fragments (> 2.0 mm) and then separated into two size fractions (0.5–2.0mm and<0.5 mm) that were processed by a High Gradient Magnetic Separator (HGMS) to finally obtain four fractions with different size and/or magnetic susceptibility. All fractions were analysed for their mineral composition, 14C concentration, and spectroscopic properties of SOM (13C CPMAS NMR). From a mineralogical point of view, the magnetic (MA) fractions essentially differed from the non-magnetic (NM) ones for a higher presence of oxides and kaolinite, which per se is non-magnetic. In terms of chemical composition of SOM, the MA fractions showed higher contribution of labile compounds than the NM ones. At all depths, the 14C concentration revealed shortest TT of SOM in the<0.5mm MA fraction and longest TT in the<0.5mm NM fraction, while the 0.5–2.0mm fractions showed intermediate and similar TT's. At depths<5 cm, the fine NM fraction was not significantly influenced by the carbon fixed after the 1950s (“bomb carbon”), having TT of almost 1000 years and suggesting that in this tropical soil some SOM can be stabilized also in relatively superficial horizons. Our findings support the hypothesis that minerals are driving factors of the fate of SOM. As a consequence, soil fractionation based on magnetic susceptibility might be a meaningful procedure for having insight into SOM dynamics.

Composition and turnover time of organic matter in soil fractions with different magnetic susceptibility / Chiti, Tommaso; Certini, Giacomo; Marzaioli, Fabio; D'Acqui, Luigi Paolo; Forte, Claudia; Castaldi, Simona; Valentini, Riccardo. - In: GEODERMA. - ISSN 0016-7061. - STAMPA. - 349:(2019), pp. 88-96. [10.1016/j.geoderma.2019.04.042]

Composition and turnover time of organic matter in soil fractions with different magnetic susceptibility

Certini, Giacomo;
2019

Abstract

The composition and turnover time (TT) of organic matter in soil fractions with different magnetic susceptibility were studied in a tropical primary forest in Ghana. The starting hypothesis was that soil organic matter (SOM) composition and properties depend on the magnetic susceptibility of the minerals SOM is associated with. Soil samples from 0 to 5, 5–15, 15–30, and 30–50 cm depth intervals were sieved to remove rock fragments (> 2.0 mm) and then separated into two size fractions (0.5–2.0mm and<0.5 mm) that were processed by a High Gradient Magnetic Separator (HGMS) to finally obtain four fractions with different size and/or magnetic susceptibility. All fractions were analysed for their mineral composition, 14C concentration, and spectroscopic properties of SOM (13C CPMAS NMR). From a mineralogical point of view, the magnetic (MA) fractions essentially differed from the non-magnetic (NM) ones for a higher presence of oxides and kaolinite, which per se is non-magnetic. In terms of chemical composition of SOM, the MA fractions showed higher contribution of labile compounds than the NM ones. At all depths, the 14C concentration revealed shortest TT of SOM in the<0.5mm MA fraction and longest TT in the<0.5mm NM fraction, while the 0.5–2.0mm fractions showed intermediate and similar TT's. At depths<5 cm, the fine NM fraction was not significantly influenced by the carbon fixed after the 1950s (“bomb carbon”), having TT of almost 1000 years and suggesting that in this tropical soil some SOM can be stabilized also in relatively superficial horizons. Our findings support the hypothesis that minerals are driving factors of the fate of SOM. As a consequence, soil fractionation based on magnetic susceptibility might be a meaningful procedure for having insight into SOM dynamics.
2019
349
88
96
Chiti, Tommaso; Certini, Giacomo; Marzaioli, Fabio; D'Acqui, Luigi Paolo; Forte, Claudia; Castaldi, Simona; Valentini, Riccardo
File in questo prodotto:
File Dimensione Formato  
Geoderma magnetic SOM.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 938.83 kB
Formato Adobe PDF
938.83 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1157100
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact