Hidden heterogeneity poses serious challenges to survival analysis because the observed (aggregate) and the unobservable (individual) hazard functions may differ markedly from each other. However, the recent discovery of the so-called “mortality plateau” (i.e., the approximately constant value when mortality levels off, at very old ages) has brought new insights and pushed researchers towards the use of the gamma- Gompertz mortality model. Among the assumptions of this model, two are particularly relevant here: the shape, not the level, of the individual hazard function is a constant and so is the rate of ageing, i.e., the relative increase in mortality risks as people get older. The latter, however, does not pass empirical tests: the rate of ageing seems to vary (albeit only slightly) by age, gender, birth cohort and country. In this paper, we propose a new model (EGG, or extended gamma-Gompertz) which overcomes this limitation by allowing the rate of ageing to increase gradually with age before converging to a constant value, as in Gompertz. While preserving all the fine theoretical and empirical properties of its simpler predecessor, the EGG model adapts better to empirical reality, i.e., in this paper, the mortality profile of the cohorts born between 1820 and 1899 in five countries with high-quality data. The advantages of this more refined mortality model are discussed.

One or more rates of ageing? The extended gamma-Gompertz model (EGG) / gustavo de santis. - In: STATISTICAL METHODS & APPLICATIONS. - ISSN 1613-981X. - ELETTRONICO. - 29:(2020), pp. 211-236. [10.1007/s10260-019-00471-z]

One or more rates of ageing? The extended gamma-Gompertz model (EGG)

gustavo de santis
2020

Abstract

Hidden heterogeneity poses serious challenges to survival analysis because the observed (aggregate) and the unobservable (individual) hazard functions may differ markedly from each other. However, the recent discovery of the so-called “mortality plateau” (i.e., the approximately constant value when mortality levels off, at very old ages) has brought new insights and pushed researchers towards the use of the gamma- Gompertz mortality model. Among the assumptions of this model, two are particularly relevant here: the shape, not the level, of the individual hazard function is a constant and so is the rate of ageing, i.e., the relative increase in mortality risks as people get older. The latter, however, does not pass empirical tests: the rate of ageing seems to vary (albeit only slightly) by age, gender, birth cohort and country. In this paper, we propose a new model (EGG, or extended gamma-Gompertz) which overcomes this limitation by allowing the rate of ageing to increase gradually with age before converging to a constant value, as in Gompertz. While preserving all the fine theoretical and empirical properties of its simpler predecessor, the EGG model adapts better to empirical reality, i.e., in this paper, the mortality profile of the cohorts born between 1820 and 1899 in five countries with high-quality data. The advantages of this more refined mortality model are discussed.
2020
29
211
236
Goal 3: Good health and well-being for people
gustavo de santis
File in questo prodotto:
File Dimensione Formato  
10260_2019_471_Author.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 2.32 MB
Formato Adobe PDF
2.32 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1159640
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact