Recently, the numerical solution of stiffly/highly oscillatory Hamiltonian problems has been attacked by using Hamiltonian boundary value methods (HBVMs) as spectral methods in time. While a theoretical analysis of this spectral approach has been only partially addressed, there is enough numerical evidence that it turns out to be very effective even when applied to a wider range of problems. Here, we fill this gap by providing a thorough convergence analysis of the methods and confirm the theoretical results with the aid of a few numerical tests.

Analysis of spectral Hamiltonian boundary value methods (SHBVMs) for the numerical solution of ODE problems / Amodio P.; Brugnano L.; Iavernaro F.. - In: NUMERICAL ALGORITHMS. - ISSN 1017-1398. - STAMPA. - 83:(2020), pp. 1489-1508. [10.1007/s11075-019-00733-7]

Analysis of spectral Hamiltonian boundary value methods (SHBVMs) for the numerical solution of ODE problems

Brugnano L.
;
2020

Abstract

Recently, the numerical solution of stiffly/highly oscillatory Hamiltonian problems has been attacked by using Hamiltonian boundary value methods (HBVMs) as spectral methods in time. While a theoretical analysis of this spectral approach has been only partially addressed, there is enough numerical evidence that it turns out to be very effective even when applied to a wider range of problems. Here, we fill this gap by providing a thorough convergence analysis of the methods and confirm the theoretical results with the aid of a few numerical tests.
2020
83
1489
1508
Amodio P.; Brugnano L.; Iavernaro F.
File in questo prodotto:
File Dimensione Formato  
numa (2019) 10.1007:s11075-019-00733-7.pdf

Accesso chiuso

Descrizione: versione on-line
Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 482.81 kB
Formato Adobe PDF
482.81 kB Adobe PDF   Richiedi una copia
numa 83 (2020) 1489-1508.pdf

Accesso chiuso

Descrizione: Version of Record
Tipologia: Pdf editoriale (Version of record)
Licenza: Solo lettura
Dimensione 524.21 kB
Formato Adobe PDF
524.21 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1159977
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 30
social impact