Pseudocontact shifts are traditionally described as a function of the anisotropy of the paramagnetic susceptibility tensor, according to the semiempirical theory mainly developed by Kurland and McGarvey [J. Magn. Reson. 2, 286-301 (1970)]. The paramagnetic susceptibility tensor is required to be symmetric. Applying point-dipole approximation to the quantum chemistry theory of hyperfine shift, pseudocontact shifts are found to scale with a non-symmetric tensor that differs by a factor g(T) / g(e) from the paramagnetic susceptibility tensor derived within the semiempirical framework. We analyze the foundations of the Kurland-McGarvey pseudocontact shift expression and recall that it is inherently based on the Russell-Saunders (LS) coupling approximation for the spin-orbit coupling. We show that the difference between the semiempirical and quantum chemistry pseudocontact shift expressions arises directly from the different treatment of the orbital contribution to the hyperfine coupling.
Pseudocontact shifts and paramagnetic susceptibility in semiempirical and quantum chemistry theories / Parigi G.; Benda L.; Ravera E.; Romanelli M.; Luchinat C.. - In: THE JOURNAL OF CHEMICAL PHYSICS. - ISSN 0021-9606. - STAMPA. - 150:(2019), pp. 144101-144101-11. [10.1063/1.5037428]
Pseudocontact shifts and paramagnetic susceptibility in semiempirical and quantum chemistry theories
Parigi G.
;Ravera E.;Romanelli M.;Luchinat C.
2019
Abstract
Pseudocontact shifts are traditionally described as a function of the anisotropy of the paramagnetic susceptibility tensor, according to the semiempirical theory mainly developed by Kurland and McGarvey [J. Magn. Reson. 2, 286-301 (1970)]. The paramagnetic susceptibility tensor is required to be symmetric. Applying point-dipole approximation to the quantum chemistry theory of hyperfine shift, pseudocontact shifts are found to scale with a non-symmetric tensor that differs by a factor g(T) / g(e) from the paramagnetic susceptibility tensor derived within the semiempirical framework. We analyze the foundations of the Kurland-McGarvey pseudocontact shift expression and recall that it is inherently based on the Russell-Saunders (LS) coupling approximation for the spin-orbit coupling. We show that the difference between the semiempirical and quantum chemistry pseudocontact shift expressions arises directly from the different treatment of the orbital contribution to the hyperfine coupling.File | Dimensione | Formato | |
---|---|---|---|
1.5037428.pdf
Accesso chiuso
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Tutti i diritti riservati
Dimensione
1.26 MB
Formato
Adobe PDF
|
1.26 MB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.