Systemic sclerosis (SSc; scleroderma) is characterized by life-threatening progressive multiorgan fibrosis orchestrated by profibrotic myofibroblasts originating from different sources. Because recent data demonstrated that the majority of myofibroblasts in a murine scleroderma model arise from adipocytic progenitors through the adipocyte-myofibroblast transition process, we sought to determine whether the SSc microenvironment may affect the differentiation potential of adipose-derived stem cells (ADSC). Normal human ADSC from three donors were treated with serum from SSc patients (n = 6), serum from healthy individuals (n = 6), or recombinant human transforming growth factor-β1 (TGFβ1) as positive control of myofibroblastic phenotype induction. ADSC were subjected to in vitro adipogenic differentiation for up to 21 days in the presence of different stimuli followed by lipid content quantification. In selected experiments, adipocytic and mesenchymal/myofibroblast marker gene and protein expression levels were assessed by Real-Time PCR, immunoblotting and immunofluorescence after administration of different stimuli for 72 and 96 h, respectively. Cell contractile phenotype was assayed by collagen gel contraction assay. Likewise stimulation with TGFβ1, SSc serum was able to significantly inhibit the adipocyte differentiation of ADSC as testified by a strong decrease in red-colored lipid droplets after 21 days of adipogenic induction. Treatment of ADSC either with SSc serum or TGFβ1 resulted in the acquisition of a myofibroblast-like phenotype characterized by a reduced expression of the adipocytic markers perilipin and adiponectin, a significant upregulation of the mesenchymal/myofibroblast markers α-SMA+ stress fibers, S100A4 and type I collagen, and an ability to effectively contract collagen gels. In SSc, the pathologic environment may favor the differentiation of ADSC into profibrotic and contractile myofibroblast-like cells. These findings strengthen the notion that the generation of myofibroblasts from ADSC may be relevant in SSc pathophysiology potentially representing a new target for the prevention/treatment of multiorgan fibrosis.

Systemic Sclerosis Serum Steers the Differentiation of Adipose-Derived Stem Cells Toward Profibrotic Myofibroblasts: Pathophysiologic Implications / Manetti, Mirko; Romano, Eloisa; Rosa, Irene; Fioretto, Bianca Saveria; Praino, Emanuela; Guiducci, Serena; Iannone, Florenzo; Ibba-Manneschi, Lidia; Matucci-Cerinic, Marco. - In: JOURNAL OF CLINICAL MEDICINE. - ISSN 2077-0383. - ELETTRONICO. - 8:(2019), pp. 1256-1256. [10.3390/jcm8081256]

Systemic Sclerosis Serum Steers the Differentiation of Adipose-Derived Stem Cells Toward Profibrotic Myofibroblasts: Pathophysiologic Implications

Manetti, Mirko
;
Romano, Eloisa;Rosa, Irene;Guiducci, Serena;Ibba-Manneschi, Lidia;Matucci-Cerinic, Marco
2019

Abstract

Systemic sclerosis (SSc; scleroderma) is characterized by life-threatening progressive multiorgan fibrosis orchestrated by profibrotic myofibroblasts originating from different sources. Because recent data demonstrated that the majority of myofibroblasts in a murine scleroderma model arise from adipocytic progenitors through the adipocyte-myofibroblast transition process, we sought to determine whether the SSc microenvironment may affect the differentiation potential of adipose-derived stem cells (ADSC). Normal human ADSC from three donors were treated with serum from SSc patients (n = 6), serum from healthy individuals (n = 6), or recombinant human transforming growth factor-β1 (TGFβ1) as positive control of myofibroblastic phenotype induction. ADSC were subjected to in vitro adipogenic differentiation for up to 21 days in the presence of different stimuli followed by lipid content quantification. In selected experiments, adipocytic and mesenchymal/myofibroblast marker gene and protein expression levels were assessed by Real-Time PCR, immunoblotting and immunofluorescence after administration of different stimuli for 72 and 96 h, respectively. Cell contractile phenotype was assayed by collagen gel contraction assay. Likewise stimulation with TGFβ1, SSc serum was able to significantly inhibit the adipocyte differentiation of ADSC as testified by a strong decrease in red-colored lipid droplets after 21 days of adipogenic induction. Treatment of ADSC either with SSc serum or TGFβ1 resulted in the acquisition of a myofibroblast-like phenotype characterized by a reduced expression of the adipocytic markers perilipin and adiponectin, a significant upregulation of the mesenchymal/myofibroblast markers α-SMA+ stress fibers, S100A4 and type I collagen, and an ability to effectively contract collagen gels. In SSc, the pathologic environment may favor the differentiation of ADSC into profibrotic and contractile myofibroblast-like cells. These findings strengthen the notion that the generation of myofibroblasts from ADSC may be relevant in SSc pathophysiology potentially representing a new target for the prevention/treatment of multiorgan fibrosis.
2019
8
1256
1256
Goal 3: Good health and well-being for people
Manetti, Mirko; Romano, Eloisa; Rosa, Irene; Fioretto, Bianca Saveria; Praino, Emanuela; Guiducci, Serena; Iannone, Florenzo; Ibba-Manneschi, Lidia; Matucci-Cerinic, Marco
File in questo prodotto:
File Dimensione Formato  
jcm-08-01256.pdf

accesso aperto

Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 19.49 MB
Formato Adobe PDF
19.49 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1170290
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
social impact