We consider a quasilinear parabolic Cauchy problem with spatial anisotropy of orthotropic type and study the spatial localization of solutions. Assuming that the initial datum is localized with respect to a coordinate having slow diffusion rate, we bound the corresponding directional velocity of the support along the flow. The expansion rate is shown to be optimal for large times.
Anisotropic Sobolev embeddings and the speed of propagation for parabolic equations / Fatma Gamze Düzgün, Sunra Mosconi, Vincenzo Vespri. - In: JOURNAL OF EVOLUTION EQUATIONS. - ISSN 1424-3199. - STAMPA. - 19:(2019), pp. 845-882. [10.1007/s00028-019-00493-w]
Anisotropic Sobolev embeddings and the speed of propagation for parabolic equations
Fatma Gamze Düzgün;Vincenzo Vespri
2019
Abstract
We consider a quasilinear parabolic Cauchy problem with spatial anisotropy of orthotropic type and study the spatial localization of solutions. Assuming that the initial datum is localized with respect to a coordinate having slow diffusion rate, we bound the corresponding directional velocity of the support along the flow. The expansion rate is shown to be optimal for large times.File | Dimensione | Formato | |
---|---|---|---|
Düzgün2019_Article_AnisotropicSobolevEmbeddingsAn.pdf
Accesso chiuso
Descrizione: Postprint
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Tutti i diritti riservati
Dimensione
522.82 kB
Formato
Adobe PDF
|
522.82 kB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.