A new high-pressure silicate, (Mg,Fe,Si)2(Si,□)O4 with a tetragonal spinelloid structure, was discovered within shock melt veins in the Tenham and Suizhou meteorites, two highly shocked L6 ordinary chondrites. Relative to ringwoodite, this phase exhibits an inversion of Si coupled with intrinsic vacancies and a consequent reduction of symmetry. Most notably, the spinelloid makes up about 30–40 vol% of the matrix of shock veins with the remainder composed of a vitrified (Mg,Fe)SiO3 phase (in Tenham) or (Mg,Fe)SiO3-rich clinopyroxene (in Suizhou); these phase assemblages constitute the bulk of the matrix in the shock veins. Previous assessments of the melt matrices concluded that majorite and akimotoite were the major phases. Our contrasting result requires revision of inferred conditions during shock melt cooling of the Tenham and Suizhou meteorites, revealing in particular a much higher quench rate (at least 5 9 103 K s-1) for veins of 100–500 lm diameter, thus overriding formation of the stable phase assemblage majoritic garnet plus periclase.

vacancy-rich, partially inverted spinelloid silicate, (Mg,Fe,Si)2(Si,□)O4, as a major matrix phase in shock melt veins of the Tenham and Suizhou L6 chondrites / Chi MA, Oliver TSCHAUNER, Luca BINDI, John R. BECKETT, Xiande XIE. - In: METEORITICS & PLANETARY SCIENCE. - ISSN 1086-9379. - ELETTRONICO. - 9:(2019), pp. 1907-1918.

vacancy-rich, partially inverted spinelloid silicate, (Mg,Fe,Si)2(Si,□)O4, as a major matrix phase in shock melt veins of the Tenham and Suizhou L6 chondrites

Luca BINDI
Membro del Collaboration Group
;
2019

Abstract

A new high-pressure silicate, (Mg,Fe,Si)2(Si,□)O4 with a tetragonal spinelloid structure, was discovered within shock melt veins in the Tenham and Suizhou meteorites, two highly shocked L6 ordinary chondrites. Relative to ringwoodite, this phase exhibits an inversion of Si coupled with intrinsic vacancies and a consequent reduction of symmetry. Most notably, the spinelloid makes up about 30–40 vol% of the matrix of shock veins with the remainder composed of a vitrified (Mg,Fe)SiO3 phase (in Tenham) or (Mg,Fe)SiO3-rich clinopyroxene (in Suizhou); these phase assemblages constitute the bulk of the matrix in the shock veins. Previous assessments of the melt matrices concluded that majorite and akimotoite were the major phases. Our contrasting result requires revision of inferred conditions during shock melt cooling of the Tenham and Suizhou meteorites, revealing in particular a much higher quench rate (at least 5 9 103 K s-1) for veins of 100–500 lm diameter, thus overriding formation of the stable phase assemblage majoritic garnet plus periclase.
2019
9
1907
1918
Chi MA, Oliver TSCHAUNER, Luca BINDI, John R. BECKETT, Xiande XIE
File in questo prodotto:
File Dimensione Formato  
ringwoodite-Q.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 2.24 MB
Formato Adobe PDF
2.24 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1171056
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 12
social impact