For a broad class of integral functionals defined on the space of n-dimensional convex bodies, we establish necessary and sufficient conditions for monotonicity, and necessary conditions for the validity of a Brunn–Minkowski type inequality. In particular, we prove that a Brunn–Minkowski type inequality implies monotonicity, and that a general Brunn–Minkowski type inequality is equivalent to the functional being a mixed volume.

Monotonicity and concavity of integral functionals involving area measures of convex bodies / Colesanti A.; Hug D.; Gomez E.S.. - In: COMMUNICATIONS IN CONTEMPORARY MATHEMATICS. - ISSN 0219-1997. - ELETTRONICO. - 19:(2017), pp. 1-26. [10.1142/S0219199716500334]

Monotonicity and concavity of integral functionals involving area measures of convex bodies

Colesanti A.;
2017

Abstract

For a broad class of integral functionals defined on the space of n-dimensional convex bodies, we establish necessary and sufficient conditions for monotonicity, and necessary conditions for the validity of a Brunn–Minkowski type inequality. In particular, we prove that a Brunn–Minkowski type inequality implies monotonicity, and that a general Brunn–Minkowski type inequality is equivalent to the functional being a mixed volume.
2017
19
1
26
Colesanti A.; Hug D.; Gomez E.S.
File in questo prodotto:
File Dimensione Formato  
1602.05994.pdf

accesso aperto

Descrizione: Versione prerefaggio
Tipologia: Altro
Licenza: Tutti i diritti riservati
Dimensione 240.5 kB
Formato Adobe PDF
240.5 kB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1172688
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact