The new generation of solar cells aims to overcome many of the issues created by silicon-based devices (e.g., decommissioning, flexibility and high-energy production costs). Due to the scarcity of the resources involved in the process and the need for the reduction of potential pollution, a greener approach to solar cell material production is required. Among others, the solvothermal approach for the synthesis of nanocrystalline Cu–Sn–S (CTS) materials fulfils all of these requirements. The material constraints must be considered, not only for the final product, but for the whole production process. Most works reporting the successful synthesis of CTS have employed surfactants, high pressure or noxious solvents. In this paper, we demonstrate the synthesis of nanocrystalline kuramite by means of a simpler, greener and scalable solvothermal synthesis. We exploited a multianalytical characterization approach (X-ray diffraction, extended X-ray absorption fine structure, field emission scanning electron microscopy, Raman spectroscopy and electronic microprobe analysis (EMPA)) to discriminate kuramite from other closely related polymorphs. Moreover, we confirmed the presence of structural defects due to a relevant antisite population.

Green and scalable synthesis of nanocrystalline kuramite / Giaccherini, Andrea; Cucinotta, Giuseppe; Martinuzzi, Stefano; Berretti, Enrico; Oberhauser, Werner; Lavacchi, Alessandro; Lepore, Giovanni Orazio; Montegrossi, Giordano; Romanelli, Maurizio; De Luca, Antonio; Innocenti, Massimo; Moggi Cecchi, Vanni; Mannini, Matteo; Buccianti, Antonella; Di Benedetto, Francesco. - In: BEILSTEIN JOURNAL OF NANOTECHNOLOGY. - ISSN 2190-4286. - ELETTRONICO. - 10:(2019), pp. 2073-2083. [10.3762/bjnano.10.202]

Green and scalable synthesis of nanocrystalline kuramite

Giaccherini, Andrea
;
Cucinotta, Giuseppe;Martinuzzi, Stefano;Berretti, Enrico;Lavacchi, Alessandro;Lepore, Giovanni Orazio;Romanelli, Maurizio;De Luca, Antonio;Innocenti, Massimo;Moggi Cecchi, Vanni;Mannini, Matteo;Buccianti, Antonella;Di Benedetto, Francesco
2019

Abstract

The new generation of solar cells aims to overcome many of the issues created by silicon-based devices (e.g., decommissioning, flexibility and high-energy production costs). Due to the scarcity of the resources involved in the process and the need for the reduction of potential pollution, a greener approach to solar cell material production is required. Among others, the solvothermal approach for the synthesis of nanocrystalline Cu–Sn–S (CTS) materials fulfils all of these requirements. The material constraints must be considered, not only for the final product, but for the whole production process. Most works reporting the successful synthesis of CTS have employed surfactants, high pressure or noxious solvents. In this paper, we demonstrate the synthesis of nanocrystalline kuramite by means of a simpler, greener and scalable solvothermal synthesis. We exploited a multianalytical characterization approach (X-ray diffraction, extended X-ray absorption fine structure, field emission scanning electron microscopy, Raman spectroscopy and electronic microprobe analysis (EMPA)) to discriminate kuramite from other closely related polymorphs. Moreover, we confirmed the presence of structural defects due to a relevant antisite population.
2019
10
2073
2083
Goal 7: Affordable and clean energy
Goal 12: Responsible consumption and production
Giaccherini, Andrea; Cucinotta, Giuseppe; Martinuzzi, Stefano; Berretti, Enrico; Oberhauser, Werner; Lavacchi, Alessandro; Lepore, Giovanni Orazio; Mo...espandi
File in questo prodotto:
File Dimensione Formato  
2190-4286-10-202.pdf

accesso aperto

Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 2.79 MB
Formato Adobe PDF
2.79 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1177518
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact