Given a non-compact semisimple Lie group G we describe all homogeneous spaces G/L carrying an invariant almost-Kähler structure (ω, J). When L is abelian and G is of classical type, we classify all such spaces which are Chern-Einstein, i.e. which satisfy ρ = λω for some λ ∈ R, where ρ is the Ricci form associated to the Chern connection.

Homogeneous almost Kähler manifolds and the Chern-Einstein equation / Dmitri Alekseevsky; Fabio Podestà. - In: MATHEMATISCHE ZEITSCHRIFT. - ISSN 0025-5874. - STAMPA. - 296:(2020), pp. 831-846. [10.1007/s00209-019-02446-y]

Homogeneous almost Kähler manifolds and the Chern-Einstein equation

Fabio Podestà
2020

Abstract

Given a non-compact semisimple Lie group G we describe all homogeneous spaces G/L carrying an invariant almost-Kähler structure (ω, J). When L is abelian and G is of classical type, we classify all such spaces which are Chern-Einstein, i.e. which satisfy ρ = λω for some λ ∈ R, where ρ is the Ricci form associated to the Chern connection.
2020
296
831
846
Goal 4: Quality education
Dmitri Alekseevsky; Fabio Podestà
File in questo prodotto:
File Dimensione Formato  
s00209-019-02446-y.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: Solo lettura
Dimensione 316.83 kB
Formato Adobe PDF
316.83 kB Adobe PDF   Richiedi una copia
AuthorAccepted Manuscript.pdf

accesso aperto

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Open Access
Dimensione 151.57 kB
Formato Adobe PDF
151.57 kB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1178116
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact