Given a non-compact semisimple Lie group G we describe all homogeneous spaces G/L carrying an invariant almost-Kähler structure (ω, J). When L is abelian and G is of classical type, we classify all such spaces which are Chern-Einstein, i.e. which satisfy ρ = λω for some λ ∈ R, where ρ is the Ricci form associated to the Chern connection.
Homogeneous almost Kähler manifolds and the Chern-Einstein equation / Dmitri Alekseevsky; Fabio Podestà. - In: MATHEMATISCHE ZEITSCHRIFT. - ISSN 0025-5874. - STAMPA. - 296:(2020), pp. 831-846. [10.1007/s00209-019-02446-y]
Homogeneous almost Kähler manifolds and the Chern-Einstein equation
Fabio Podestà
2020
Abstract
Given a non-compact semisimple Lie group G we describe all homogeneous spaces G/L carrying an invariant almost-Kähler structure (ω, J). When L is abelian and G is of classical type, we classify all such spaces which are Chern-Einstein, i.e. which satisfy ρ = λω for some λ ∈ R, where ρ is the Ricci form associated to the Chern connection.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
s00209-019-02446-y.pdf
Accesso chiuso
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Solo lettura
Dimensione
316.83 kB
Formato
Adobe PDF
|
316.83 kB | Adobe PDF | Richiedi una copia |
|
AuthorAccepted Manuscript.pdf
accesso aperto
Tipologia:
Versione finale referata (Postprint, Accepted manuscript)
Licenza:
Open Access
Dimensione
151.57 kB
Formato
Adobe PDF
|
151.57 kB | Adobe PDF |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.



