We present new quantitative estimates for spherical symmetry that concern Serrin's overdetermined problem for the torsional rigidity, Alexandrov's Soap Bubble Theorem, and other related problems. The new estimates improve on those obtained in previous papers by the same authors and are in some cases optimal.

Nearly optimal stability for Serrin's problem and the Soap Bubble Theorem / Rolando Magnanini; Giorgio Poggesi. - In: CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 0944-2669. - STAMPA. - 59:(2020), pp. 35.1-35.23. [10.1007/s00526-019-1689-7]

Nearly optimal stability for Serrin's problem and the Soap Bubble Theorem

Rolando Magnanini;Giorgio Poggesi
2020

Abstract

We present new quantitative estimates for spherical symmetry that concern Serrin's overdetermined problem for the torsional rigidity, Alexandrov's Soap Bubble Theorem, and other related problems. The new estimates improve on those obtained in previous papers by the same authors and are in some cases optimal.
2020
59
1
23
Rolando Magnanini; Giorgio Poggesi
File in questo prodotto:
File Dimensione Formato  
MagnaniniPoggesiFlore1903.04823.pdf

accesso aperto

Descrizione: Versione arxiv
Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Open Access
Dimensione 309.19 kB
Formato Adobe PDF
309.19 kB Adobe PDF
ReprintCVPDE20200123.pdf

accesso aperto

Descrizione: ReprintMagnaniniPoggesiCVPDE20200123
Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 403.85 kB
Formato Adobe PDF
403.85 kB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1179775
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 29
social impact