We present new quantitative estimates for spherical symmetry that concern Serrin's overdetermined problem for the torsional rigidity, Alexandrov's Soap Bubble Theorem, and other related problems. The new estimates improve on those obtained in previous papers by the same authors and are in some cases optimal.
Nearly optimal stability for Serrin's problem and the Soap Bubble Theorem / Rolando Magnanini; Giorgio Poggesi. - In: CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 0944-2669. - STAMPA. - 59:(2020), pp. 35.1-35.23. [10.1007/s00526-019-1689-7]
Nearly optimal stability for Serrin's problem and the Soap Bubble Theorem
Rolando Magnanini;Giorgio Poggesi
2020
Abstract
We present new quantitative estimates for spherical symmetry that concern Serrin's overdetermined problem for the torsional rigidity, Alexandrov's Soap Bubble Theorem, and other related problems. The new estimates improve on those obtained in previous papers by the same authors and are in some cases optimal.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
MagnaniniPoggesiFlore1903.04823.pdf
accesso aperto
Descrizione: Versione arxiv
Tipologia:
Versione finale referata (Postprint, Accepted manuscript)
Licenza:
Open Access
Dimensione
309.19 kB
Formato
Adobe PDF
|
309.19 kB | Adobe PDF | |
ReprintCVPDE20200123.pdf
accesso aperto
Descrizione: ReprintMagnaniniPoggesiCVPDE20200123
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Open Access
Dimensione
403.85 kB
Formato
Adobe PDF
|
403.85 kB | Adobe PDF |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.