The adoption of next generation sequencing based methods in cancer research allowed for the investigation of the complex genetic structure of tumor samples. In the last few years, considerable importance was given to the research of somatic variants and several computational approaches were developed for this purpose. Despite continuous improvements to these programs, the validation of their results it's a hard challenge due to multiple sources of error. To overcome this drawback different simulation approaches are used to generate synthetic samples but they are often based on the addition of artificial mutations that mimic the complexity of genomic variations. For these reasons, we developed a novel software, Xome-Blender, that generates synthetic cancer genomes with user defined features such as the number of subclones, the number of somatic variants and the presence of copy number alterations (CNAs), without the addition of any synthetic element. The singularity of our method is the "morphological approach" used to generate mutation events. To demonstrate the power of our tool we used it to address the hard challenge of evaluating the performance of nine state-of-the-art somatic variant calling methods for small and large variants (VarScan2, MuTect, Shimmer, BCFtools, Strelka, EXCAVATOR2, Control-FREEC and CopywriteR). Through these analyses we observed that by using Xome-Blender data it is possible to appraise small differences between their performance and we have designated VarScan2 and EXCAVATOR2 as best tool for this kind of applications. Xome-Blender is unix-based, licensed under the GPLv3 and freely available at https://github.com/rsemeraro/XomeBlender.

Xome-Blender: A novel cancer genome simulator / Semeraro R.; Orlandini V.; Magi A.. - In: PLOS ONE. - ISSN 1932-6203. - ELETTRONICO. - 13:(2018), pp. e0194472-0. [10.1371/journal.pone.0194472]

Xome-Blender: A novel cancer genome simulator

Semeraro R.
Methodology
;
Orlandini V.
Software
;
Magi A.
Conceptualization
2018

Abstract

The adoption of next generation sequencing based methods in cancer research allowed for the investigation of the complex genetic structure of tumor samples. In the last few years, considerable importance was given to the research of somatic variants and several computational approaches were developed for this purpose. Despite continuous improvements to these programs, the validation of their results it's a hard challenge due to multiple sources of error. To overcome this drawback different simulation approaches are used to generate synthetic samples but they are often based on the addition of artificial mutations that mimic the complexity of genomic variations. For these reasons, we developed a novel software, Xome-Blender, that generates synthetic cancer genomes with user defined features such as the number of subclones, the number of somatic variants and the presence of copy number alterations (CNAs), without the addition of any synthetic element. The singularity of our method is the "morphological approach" used to generate mutation events. To demonstrate the power of our tool we used it to address the hard challenge of evaluating the performance of nine state-of-the-art somatic variant calling methods for small and large variants (VarScan2, MuTect, Shimmer, BCFtools, Strelka, EXCAVATOR2, Control-FREEC and CopywriteR). Through these analyses we observed that by using Xome-Blender data it is possible to appraise small differences between their performance and we have designated VarScan2 and EXCAVATOR2 as best tool for this kind of applications. Xome-Blender is unix-based, licensed under the GPLv3 and freely available at https://github.com/rsemeraro/XomeBlender.
2018
13
e0194472
0
Semeraro R.; Orlandini V.; Magi A.
File in questo prodotto:
File Dimensione Formato  
journal.pone.0194472.pdf

accesso aperto

Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 6.08 MB
Formato Adobe PDF
6.08 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1179820
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
social impact