Measurements of proton nuclear magnetic resonance (H1NMR) spectra and relaxation and of muon spin relaxation (μ+SR) have been performed as a function of temperature and external magnetic field on two isostructural lanthanide complexes, Er(trensal) and Dy(trensal) [where H3trensal=2,2′,2′′−tris−(salicylideneimino)triethylamine], featuring crystallographically imposed trigonal symmetry. Both the nuclear 1/T1 and muon λ longitudinal relaxation rates (LRRs) exhibit a peak for temperatures T < 30 K, associated to the slowing down of the spin dynamics, and the width of the NMR absorption spectra starts to increase significantly at T ∼ 50 K, a temperature sizably higher than the one of the LRR peaks. The LRR peaks have a field and temperature dependence different from those previously reported for all molecular nanomagnets. They do not follow the Bloembergen-Purcell-Pound scaling of the amplitude and position in temperature and field and thus cannot be explained in terms of a single dominating correlation time τc determined by the spin slowing down at low temperature. Further, for T<50K the spectral width does not follow the temperature behavior of the magnetic susceptibility χ. We suggest, using simple qualitative considerations, that the observed behavior is due to a combination of two different relaxation processes characterized by the correlation times τLT and τHT, dominating for T < 30 K and T>50K, respectively. Finally, the observed flattening of LRR for T < 5 K is suggested to have a quantum origin.
NMR and μ+SR detection of unconventional spin dynamics in Er(trensal) and Dy(trensal) molecular magnets / Lucaccini, E.; Sorace, L.; Adelnia, F.; Sanna, S.; Arosio, P.; Mariani, M.; Carretta, S.; Salman, Z.; Borsa, F.; Lascialfari, A.. - In: PHYSICAL REVIEW. B. - ISSN 2469-9950. - STAMPA. - 100:(2019), pp. 174416-174416. [10.1103/PhysRevB.100.174416]
NMR and μ+SR detection of unconventional spin dynamics in Er(trensal) and Dy(trensal) molecular magnets
Lucaccini, E.;Sorace, L.
;Lascialfari, A.
2019
Abstract
Measurements of proton nuclear magnetic resonance (H1NMR) spectra and relaxation and of muon spin relaxation (μ+SR) have been performed as a function of temperature and external magnetic field on two isostructural lanthanide complexes, Er(trensal) and Dy(trensal) [where H3trensal=2,2′,2′′−tris−(salicylideneimino)triethylamine], featuring crystallographically imposed trigonal symmetry. Both the nuclear 1/T1 and muon λ longitudinal relaxation rates (LRRs) exhibit a peak for temperatures T < 30 K, associated to the slowing down of the spin dynamics, and the width of the NMR absorption spectra starts to increase significantly at T ∼ 50 K, a temperature sizably higher than the one of the LRR peaks. The LRR peaks have a field and temperature dependence different from those previously reported for all molecular nanomagnets. They do not follow the Bloembergen-Purcell-Pound scaling of the amplitude and position in temperature and field and thus cannot be explained in terms of a single dominating correlation time τc determined by the spin slowing down at low temperature. Further, for T<50K the spectral width does not follow the temperature behavior of the magnetic susceptibility χ. We suggest, using simple qualitative considerations, that the observed behavior is due to a combination of two different relaxation processes characterized by the correlation times τLT and τHT, dominating for T < 30 K and T>50K, respectively. Finally, the observed flattening of LRR for T < 5 K is suggested to have a quantum origin.File | Dimensione | Formato | |
---|---|---|---|
201-Muonitrensal_Lucaccini_PhysRevB_2019.pdf
accesso aperto
Descrizione: Articolo
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Open Access
Dimensione
1.48 MB
Formato
Adobe PDF
|
1.48 MB | Adobe PDF |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.