The gut microbiota is a complex component of humans that depends on diet, host genome, and lifestyle. The background: The study purpose is to find relations between nutrition, intestinal lactic acid bacteria (LAB) from various environments (human, animal intestine, and yogurt) and sulfate-reducing microbial communities in the large intestine; to compare kinetic growth parameters of LAB; and to determine their sensitivity to different concentration of hydrogen sulfide produced by intestinal sulfate-reducing bacteria. METHODS: Microbiological (isolation and identification), biochemical (electrophoresis), molecular biology methods (DNA isolation and PCR analysis), and statistical processing (average and standard error calculations) of the results were used. THE RESULTS: The toxicity of hydrogen sulfide produced by sulfate-reducing bacteria, the survival of lactic acid bacteria, and minimal inhibitory concentrations (MIC) were determined. The measured hydrogen sulfide sensitivity values were the same for L. paracasei and L. reuteri (MIC > 1.1 mM). In addition, L. plantarum and L. fermentum showed also a similar sensitivity (MIC > 0.45 mM) but significantly (p < 0.05) lower than L. reuteri and L. paracasei (1.1 > 0.45 mM). L. paracasei and L. reuteri are more sensitive to hydrogen sulfide than L. fermentum and L. plantarum. L. pentosus was sensitive to the extremely low concentration of H2S (MIC > 0.15 mM). CONCLUSIONS: The Lactobacillus species were significantly sensitive to hydrogen sulfide, which is a final metabolite of intestinal sulfate-reducing bacteria. The results are definitely helpful for a better understanding of complicated interaction among intestinal microbiota and nutrition.769

Hydrogen sulfide effects on the survival of lactobacilli with emphasis on the development of inflammatory bowel diseases / Kushkevych I.; Kotrsova V.; Dordevic D.; Bunkova L.; Vitezova M.; Amedei A.. - In: BIOMOLECULES. - ISSN 2218-273X. - ELETTRONICO. - 9:(2019), pp. 752-769. [10.3390/biom9120752]

Hydrogen sulfide effects on the survival of lactobacilli with emphasis on the development of inflammatory bowel diseases

Amedei A.
Writing – Review & Editing
2019

Abstract

The gut microbiota is a complex component of humans that depends on diet, host genome, and lifestyle. The background: The study purpose is to find relations between nutrition, intestinal lactic acid bacteria (LAB) from various environments (human, animal intestine, and yogurt) and sulfate-reducing microbial communities in the large intestine; to compare kinetic growth parameters of LAB; and to determine their sensitivity to different concentration of hydrogen sulfide produced by intestinal sulfate-reducing bacteria. METHODS: Microbiological (isolation and identification), biochemical (electrophoresis), molecular biology methods (DNA isolation and PCR analysis), and statistical processing (average and standard error calculations) of the results were used. THE RESULTS: The toxicity of hydrogen sulfide produced by sulfate-reducing bacteria, the survival of lactic acid bacteria, and minimal inhibitory concentrations (MIC) were determined. The measured hydrogen sulfide sensitivity values were the same for L. paracasei and L. reuteri (MIC > 1.1 mM). In addition, L. plantarum and L. fermentum showed also a similar sensitivity (MIC > 0.45 mM) but significantly (p < 0.05) lower than L. reuteri and L. paracasei (1.1 > 0.45 mM). L. paracasei and L. reuteri are more sensitive to hydrogen sulfide than L. fermentum and L. plantarum. L. pentosus was sensitive to the extremely low concentration of H2S (MIC > 0.15 mM). CONCLUSIONS: The Lactobacillus species were significantly sensitive to hydrogen sulfide, which is a final metabolite of intestinal sulfate-reducing bacteria. The results are definitely helpful for a better understanding of complicated interaction among intestinal microbiota and nutrition.769
2019
9
752
769
Kushkevych I.; Kotrsova V.; Dordevic D.; Bunkova L.; Vitezova M.; Amedei A.
File in questo prodotto:
File Dimensione Formato  
biomolecules-09-00752-v2.pdf

accesso aperto

Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 1.86 MB
Formato Adobe PDF
1.86 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1181209
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 31
social impact