descending modulation of pain through the action on spinal α2-adrenoceptors. Histaminergic innervation from the tuberomammillary nucleus of the LC increases firing of noradrenergic neurons and might contribute to pain control. Here we evaluated the contribution of LC histaminergic innervation in descending modulation of neuropathic hypersensitivity, by investigating the role of the histamine H4 receptor subtype in a mouse model of neuropathic pain. Intra LC administration of the H4 agonist VUF 8430 attenuated mechanical and thermal allodynia of mice that underwent spared nerve injury (SNI). Similarly, histamine in the LC showed mechanical and thermal anti-hypersensitivity. Pretreatment of LC with JNJ 10191584 (H4 antagonist) prevented the beneficial effect of VUF 8430 and histamine on nociceptive behaviour. Comparable results were obtained after intrathecal administration of drugs. The intrathecal administration of the α2-adrenoceptor agonist clonidine ameliorated mechanical and thermal allodynia in SNI mice. The clonidine-induced anti-hypersensitivity effect was prevented by intra LC pretreatment with JNJ 10191584. In addition, clonidine failed to suppress neuropathic pain in H4 deficient mice. LC H4 receptors showed a ubiquitous distribution within LC, a neuronal localization and H4 immunostaining was detected on noradrenergic neurons expressing phosphorylated cAMP response elementbinding protein (CREB), a marker of neuronal activation. Under pain pathological conditions H4 stimulation might promote the activation of the coeruleospinal noradrenergic neurons that exert an inhibitory control over spinal dorsal horn neuronal excitability. Thus, histamine H4 receptor stimulation may represent a perspective for neuropathic pain management.

Histamine H4 receptor stimulation in the locus coeruleus attenuates neuropathic pain by promoting the coeruleospinal noradrenergic inhibitory pathway / Sanna M.D.; Borgonetti V.; Masini E.; Galeotti N.. - In: EUROPEAN JOURNAL OF PHARMACOLOGY. - ISSN 0014-2999. - STAMPA. - 868:(2020), pp. 1-10. [10.1016/j.ejphar.2019.172859]

Histamine H4 receptor stimulation in the locus coeruleus attenuates neuropathic pain by promoting the coeruleospinal noradrenergic inhibitory pathway

Sanna M. D.;Borgonetti V.;Galeotti N.
2020

Abstract

descending modulation of pain through the action on spinal α2-adrenoceptors. Histaminergic innervation from the tuberomammillary nucleus of the LC increases firing of noradrenergic neurons and might contribute to pain control. Here we evaluated the contribution of LC histaminergic innervation in descending modulation of neuropathic hypersensitivity, by investigating the role of the histamine H4 receptor subtype in a mouse model of neuropathic pain. Intra LC administration of the H4 agonist VUF 8430 attenuated mechanical and thermal allodynia of mice that underwent spared nerve injury (SNI). Similarly, histamine in the LC showed mechanical and thermal anti-hypersensitivity. Pretreatment of LC with JNJ 10191584 (H4 antagonist) prevented the beneficial effect of VUF 8430 and histamine on nociceptive behaviour. Comparable results were obtained after intrathecal administration of drugs. The intrathecal administration of the α2-adrenoceptor agonist clonidine ameliorated mechanical and thermal allodynia in SNI mice. The clonidine-induced anti-hypersensitivity effect was prevented by intra LC pretreatment with JNJ 10191584. In addition, clonidine failed to suppress neuropathic pain in H4 deficient mice. LC H4 receptors showed a ubiquitous distribution within LC, a neuronal localization and H4 immunostaining was detected on noradrenergic neurons expressing phosphorylated cAMP response elementbinding protein (CREB), a marker of neuronal activation. Under pain pathological conditions H4 stimulation might promote the activation of the coeruleospinal noradrenergic neurons that exert an inhibitory control over spinal dorsal horn neuronal excitability. Thus, histamine H4 receptor stimulation may represent a perspective for neuropathic pain management.
2020
868
1
10
Sanna M.D.; Borgonetti V.; Masini E.; Galeotti N.
File in questo prodotto:
File Dimensione Formato  
179.EJP H4 LC.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 1.91 MB
Formato Adobe PDF
1.91 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1182131
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 5
social impact