This work gives a contribution to the emerging literature on the use of regression trees for hierarchical data to increase the flexibility and the predictive ability of random effects models. The proposed procedure extends random effect re- gression trees considering a random effect model with both a tree component and a linear component. Moreover, it is suggested to decompose the effects of predictors within and between clusters. The performance of the proposed procedure is evaluated through a simulation study and an application to INVALSI data on students achieve- ment.

Tree embedded linear mixed models / Anna Gottard, Leonardo Grilli, Carla Rampichini, Giulia Vannucci. - ELETTRONICO. - (2019), pp. 239-242. (Intervento presentato al convegno CLADAG 2019 tenutosi a Cassino nel 11-13 settembre 2019).

Tree embedded linear mixed models

Anna Gottard
;
Leonardo Grilli;Carla Rampichini;Giulia Vannucci
2019

Abstract

This work gives a contribution to the emerging literature on the use of regression trees for hierarchical data to increase the flexibility and the predictive ability of random effects models. The proposed procedure extends random effect re- gression trees considering a random effect model with both a tree component and a linear component. Moreover, it is suggested to decompose the effects of predictors within and between clusters. The performance of the proposed procedure is evaluated through a simulation study and an application to INVALSI data on students achieve- ment.
2019
CLADAG 2019 Book of Short Papers
CLADAG 2019
Cassino
11-13 settembre 2019
Anna Gottard, Leonardo Grilli, Carla Rampichini, Giulia Vannucci
File in questo prodotto:
File Dimensione Formato  
mypapercladag2019.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 6.91 MB
Formato Adobe PDF
6.91 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1182327
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact