Abstract PURPOSE: Nowadays, no human neuroendocrine cell models derived from the neural crest are available. In this study, we present non-transformed long-term primary Neural Crest Cells (NCCs) isolated from the trunk region of the neural crest at VIII-XII gestational weeks of human foetuses obtained from voluntary legal abortion. METHODS AND RESULTS: In NCC, quantitative real-time RT PCR demonstrated the expression of neural crest specifier genes, such as Snail1, Snail2/SLUG, Sox10, FoxD3, c-Myc, and p75NTR. Moreover, these cell populations expressed stemness markers (such as Nanog and nestin), as well as markers of motility and invasion (TAGLN, MMP9, CXCR4, and CXCR7), and of neuronal/glial differentiation (MAP2, GFAP, SYP, and TAU). Functional analysis demonstrated that these cells not only possessed high migration properties, but most importantly, they expressed markers of sympatho-adrenal lineage, such as ASCL1 and tyrosine hydroxylase (TH). Moreover, the expression of TH increased after the induction with two different protocols of differentiation towards neuronal and sympatho-adrenal phenotypes. Finally, exposure to conditioned culture media from NCC induced a mature phenotype in a neuronal cell model (namely SH-SY5Y), suggesting that NCC may also act like Schwann precursors. CONCLUSION: This unique human cell model provides a solid tool for future studies addressing the bases of human neural crest-derived neuroendocrine tumours.

A unique neuroendocrine cell model derived from the human foetal neural crest / Rapizzi E, Benvenuti S, Deledda C, Martinelli S, Sarchielli E, Fibbi B, Luciani P, Mazzanti B, Pantaleo M, Marroncini G, Vannelli GB, Maggi M, Mannelli M, Luconi M, Peri A.. - In: JOURNAL OF ENDOCRINOLOGICAL INVESTIGATION. - ISSN 1720-8386. - STAMPA. - 43:(2020), pp. 1259-1269. [10.1007/s40618-020-01213-9]

A unique neuroendocrine cell model derived from the human foetal neural crest.

Rapizzi E;Benvenuti S;Deledda C;Martinelli S;Sarchielli E;Fibbi B;Mazzanti B;Marroncini G;Maggi M;Mannelli M;Luconi M
;
Peri A.
2020

Abstract

Abstract PURPOSE: Nowadays, no human neuroendocrine cell models derived from the neural crest are available. In this study, we present non-transformed long-term primary Neural Crest Cells (NCCs) isolated from the trunk region of the neural crest at VIII-XII gestational weeks of human foetuses obtained from voluntary legal abortion. METHODS AND RESULTS: In NCC, quantitative real-time RT PCR demonstrated the expression of neural crest specifier genes, such as Snail1, Snail2/SLUG, Sox10, FoxD3, c-Myc, and p75NTR. Moreover, these cell populations expressed stemness markers (such as Nanog and nestin), as well as markers of motility and invasion (TAGLN, MMP9, CXCR4, and CXCR7), and of neuronal/glial differentiation (MAP2, GFAP, SYP, and TAU). Functional analysis demonstrated that these cells not only possessed high migration properties, but most importantly, they expressed markers of sympatho-adrenal lineage, such as ASCL1 and tyrosine hydroxylase (TH). Moreover, the expression of TH increased after the induction with two different protocols of differentiation towards neuronal and sympatho-adrenal phenotypes. Finally, exposure to conditioned culture media from NCC induced a mature phenotype in a neuronal cell model (namely SH-SY5Y), suggesting that NCC may also act like Schwann precursors. CONCLUSION: This unique human cell model provides a solid tool for future studies addressing the bases of human neural crest-derived neuroendocrine tumours.
2020
43
1259
1269
Goal 3: Good health and well-being for people
Rapizzi E, Benvenuti S, Deledda C, Martinelli S, Sarchielli E, Fibbi B, Luciani P, Mazzanti B, Pantaleo M, Marroncini G, Vannelli GB, Maggi M, Mannell...espandi
File in questo prodotto:
File Dimensione Formato  
Rapizzi JENI 2020,pdf.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 1.55 MB
Formato Adobe PDF
1.55 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1186396
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact