In this paper, we study the numerical solution of Manakov systems by using a spectrally accurate Fourier decomposition in space, coupled with a spectrally accurate time integration. This latter relies on the use of spectral Hamiltonian Boundary Value Methods. The used approach allows to conserve all the physical invariants of the systems. Some numerical tests are reported.

Spectrally accurate space-time solution of Manakov systems / Luigi Barletti, Luigi Brugnano, Yifa Tang, Beibei Zhu. - In: JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS. - ISSN 0377-0427. - STAMPA. - 377:(2020), pp. 11291801-11291820. [10.1016/j.cam.2020.112918]

Spectrally accurate space-time solution of Manakov systems

Luigi Barletti;Luigi Brugnano
;
2020

Abstract

In this paper, we study the numerical solution of Manakov systems by using a spectrally accurate Fourier decomposition in space, coupled with a spectrally accurate time integration. This latter relies on the use of spectral Hamiltonian Boundary Value Methods. The used approach allows to conserve all the physical invariants of the systems. Some numerical tests are reported.
2020
377
11291801
11291820
Luigi Barletti, Luigi Brugnano, Yifa Tang, Beibei Zhu
File in questo prodotto:
File Dimensione Formato  
JCAM2020.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: Creative commons
Dimensione 2.16 MB
Formato Adobe PDF
2.16 MB Adobe PDF   Richiedi una copia
ArXiv_1910.06040.pdf

accesso aperto

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Creative commons
Dimensione 3.85 MB
Formato Adobe PDF
3.85 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1188653
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact