Despite the deep knowledge of the honey bee (Apis mellifera) gut microbiome, information on the microbial communities of other hive components is still scarce. Propolis originates from a natural resinous mixture that honeybees collect from different plants sources and modify; it is used mainly to ensure the hygiene of the hive. By virtue of its antimicrobial properties, propolis has been considered relatively aseptic, yet its ability to harbor microorganisms has not been previously investigated. In this study we report the first description of the diversity of the microbial community of propolis by both targeted-metagenomics analysis and cultivation. We demonstrated that propolis hosts a variety of microbial strains belonging to taxa already described in other hive components. Some of them are cultivable in standard laboratory conditions, and show metabolic characteristics compatible with their persistence in different physiological states inside propolis. Isolated bacteria produce antimicrobials against Gram-negative and Gram-positive bacteria, and entomopathogenic fungi, with different spectra of inhibition. Metagenomics analysis shows the presence of bacteria and fungi with great potential to outcompete potentially harmful microorganisms. These findings suggest that the characterized microbiota could contribute to the overall antimicrobial properties of propolis and to its ecological role as “disinfectant” within the hive.
Propolis Hosts a Diverse microbial Community / Enrico Casalone, Duccio Cavalieri, Giulia Daly, Francesco Vitali & Brunella Perito. - In: WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY. - ISSN 0959-3993. - ELETTRONICO. - 36:(2020), pp. 50-56.
Propolis Hosts a Diverse microbial Community
Enrico Casalone;Duccio Cavalieri;Giulia Daly;Brunella Perito
2020
Abstract
Despite the deep knowledge of the honey bee (Apis mellifera) gut microbiome, information on the microbial communities of other hive components is still scarce. Propolis originates from a natural resinous mixture that honeybees collect from different plants sources and modify; it is used mainly to ensure the hygiene of the hive. By virtue of its antimicrobial properties, propolis has been considered relatively aseptic, yet its ability to harbor microorganisms has not been previously investigated. In this study we report the first description of the diversity of the microbial community of propolis by both targeted-metagenomics analysis and cultivation. We demonstrated that propolis hosts a variety of microbial strains belonging to taxa already described in other hive components. Some of them are cultivable in standard laboratory conditions, and show metabolic characteristics compatible with their persistence in different physiological states inside propolis. Isolated bacteria produce antimicrobials against Gram-negative and Gram-positive bacteria, and entomopathogenic fungi, with different spectra of inhibition. Metagenomics analysis shows the presence of bacteria and fungi with great potential to outcompete potentially harmful microorganisms. These findings suggest that the characterized microbiota could contribute to the overall antimicrobial properties of propolis and to its ecological role as “disinfectant” within the hive.I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.