This paper is concerned with the Minkowski convolution of viscosity solutions of fully nonlinear parabolic equations. We adopt this convolution to compare viscosity solutions of initial-boundary value problems in different domains. As a consequence, we can for instance obtain parabolic power concavity of solutions to a general class of parabolic equations. Our results are applicable to the Pucci operator, the normalized q-Laplacians with 1

Parabolic Minkowski convolutions and concavity properties of viscosity solutions to fully nonlinear equations / Ishige K.; Liu Q.; Salani P.. - In: JOURNAL DE MATHÉMATIQUES PURES ET APPLIQUÉES. - ISSN 0021-7824. - STAMPA. - 141:(2020), pp. 342-370. [10.1016/j.matpur.2019.12.010]

Parabolic Minkowski convolutions and concavity properties of viscosity solutions to fully nonlinear equations

Ishige K.;Liu Q.
;
Salani P.
2020

Abstract

This paper is concerned with the Minkowski convolution of viscosity solutions of fully nonlinear parabolic equations. We adopt this convolution to compare viscosity solutions of initial-boundary value problems in different domains. As a consequence, we can for instance obtain parabolic power concavity of solutions to a general class of parabolic equations. Our results are applicable to the Pucci operator, the normalized q-Laplacians with 1
2020
141
342
370
Goal 9: Industry, Innovation, and Infrastructure
Ishige K.; Liu Q.; Salani P.
File in questo prodotto:
File Dimensione Formato  
ILS_revised.pdf

accesso aperto

Descrizione: POST-PRINT DELL'AUTORE
Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 198.2 kB
Formato Adobe PDF
198.2 kB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1191698
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact