The formation of a clathrate hydrate crystal is characterized by several steps, each of them distinguished by a different structural arrangement and temporal duration. A precise definition of these different forms is a challenging task, because the entirety of the formation dynamics spans over a time interval ranging from few nanoseconds to several days. Computational methods are powerful and essential to define the nucleation step, but they fail in providing a reliable picture of the long-range order establishment. On the other side, the experimental methods employed in the study of the growth dynamics usually monitor the hydrate growth at the interface with the fluid and thus are limited by the diffusion of the guest molecules through the newly formed hydrate phase. This problem is overcome here by the confinement of an argon hydrate sample in a sapphire anvil cell, allowing monitoring of the melting and crystallization of hydrates under moderate pressures by FTIR and Raman spectroscopies. This approach, besides providing a spectroscopic characterization of this hydrate, allowed the time windows characteristic of the formation of a macroscopic amorphous phase to be identified, possibly coincident with the so-called blob, and its rapid evolution toward the achievement of the local structure. Long-range ordering takes place on a longer time scale, most of it is realized in few hours but still evolving for weeks. No hints for supporting the so-called memory ef fect are gained through this study.

Growth Dynamics of Crystalline Ar Hydrate / Fanetti, Samuele; Scelta, Demetrio; Bini, Roberto. - In: JOURNAL OF PHYSICAL CHEMISTRY. C. - ISSN 1932-7447. - STAMPA. - 124:(2020), pp. 10159-10166. [10.1021/acs.jpcc.0c00386]

Growth Dynamics of Crystalline Ar Hydrate

Fanetti, Samuele;Scelta, Demetrio;Bini, Roberto
2020

Abstract

The formation of a clathrate hydrate crystal is characterized by several steps, each of them distinguished by a different structural arrangement and temporal duration. A precise definition of these different forms is a challenging task, because the entirety of the formation dynamics spans over a time interval ranging from few nanoseconds to several days. Computational methods are powerful and essential to define the nucleation step, but they fail in providing a reliable picture of the long-range order establishment. On the other side, the experimental methods employed in the study of the growth dynamics usually monitor the hydrate growth at the interface with the fluid and thus are limited by the diffusion of the guest molecules through the newly formed hydrate phase. This problem is overcome here by the confinement of an argon hydrate sample in a sapphire anvil cell, allowing monitoring of the melting and crystallization of hydrates under moderate pressures by FTIR and Raman spectroscopies. This approach, besides providing a spectroscopic characterization of this hydrate, allowed the time windows characteristic of the formation of a macroscopic amorphous phase to be identified, possibly coincident with the so-called blob, and its rapid evolution toward the achievement of the local structure. Long-range ordering takes place on a longer time scale, most of it is realized in few hours but still evolving for weeks. No hints for supporting the so-called memory ef fect are gained through this study.
2020
124
10159
10166
Fanetti, Samuele; Scelta, Demetrio; Bini, Roberto
File in questo prodotto:
File Dimensione Formato  
JPCC_Ar_hydrate.pdf

accesso aperto

Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 1.99 MB
Formato Adobe PDF
1.99 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1191861
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact