The last few decades have seen an unrestrained diffusion of smart-integrated technologies that are extremely pervasive and customized based on humans’ environments and habits. Wearable and mobile technologies such as smartphones, smartwatches, lightweight sensors, textile-based support systems, flexible displays, and micro-cameras are now supplied with a significant amount of computational power, low-energy wireless communication, long-life battery, and large-memory storage that make them a valid platform for monitoring the everyday life of humans. In this context, a large variety of new sensors are being developed to equip such well-established wearable and mobile technologies with the aim of continuous monitoring of physical behavior, emotional state, well-being, and health condition. Interestingly, the recently improved computational resources of mobile systems allow us to acquire, process, and communicate a large set of different information. Nevertheless, this confronts us with the chance and challenge of managing an impressive amount of heterogeneous data, including physiological signals, through new ad-hoc processing, synthesis methods, and big data analysis as well as ad-hoc experimental paradigms, system designs, and models.

Data processing and wearable systems for effective human monitoring / Greco A.; Lanata A.; Vanello N.. - In: ELECTRONICS. - ISSN 2079-9292. - ELETTRONICO. - (2019), pp. 1-5. [10.3390/electronics8091003]

Data processing and wearable systems for effective human monitoring

Lanata A.;
2019

Abstract

The last few decades have seen an unrestrained diffusion of smart-integrated technologies that are extremely pervasive and customized based on humans’ environments and habits. Wearable and mobile technologies such as smartphones, smartwatches, lightweight sensors, textile-based support systems, flexible displays, and micro-cameras are now supplied with a significant amount of computational power, low-energy wireless communication, long-life battery, and large-memory storage that make them a valid platform for monitoring the everyday life of humans. In this context, a large variety of new sensors are being developed to equip such well-established wearable and mobile technologies with the aim of continuous monitoring of physical behavior, emotional state, well-being, and health condition. Interestingly, the recently improved computational resources of mobile systems allow us to acquire, process, and communicate a large set of different information. Nevertheless, this confronts us with the chance and challenge of managing an impressive amount of heterogeneous data, including physiological signals, through new ad-hoc processing, synthesis methods, and big data analysis as well as ad-hoc experimental paradigms, system designs, and models.
2019
1
5
Greco A.; Lanata A.; Vanello N.
File in questo prodotto:
File Dimensione Formato  
electronics-08-01003.pdf

accesso aperto

Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 160.6 kB
Formato Adobe PDF
160.6 kB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1192096
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact