Next-generation sequencing (NGS) approaches are attractive alternatives to the PCR-based characterisation of genetically modified plants for safety assessment and labelling since NGS is highly sensitive to the detection of T-DNA inserts as well as vector backbone sequences in transgenic plants. In this study, two independent transgenic male Populus tremula lines, T193-2 and T195-1, both carrying the FLOWERING LOCUS T gene from Arabidopsis thaliana under control of a heat-inducible promoter (pHSP::AtFT) and the non-transgenic control clone W52, were further characterised by NGS and third-generation sequencing. The results support previous findings that the T-DNA was hemizygously inserted in one genomic locus of each line. However, the T-DNA insertions consist of conglomerations of one or two T-DNA copies together with a small T-DNA fragment without AtFT parts. Based on NGS data, no additional T-DNA splinters or vector backbone sequences could be identified in the genome of the two transgenic lines. Seedlings derived from crosses between the pHSP::AtFT transgenic male parents and female wild type plants are therefore expected to be T-DNA splinter or vector backbone free. Thus, PCR analyses amplifying a partial T-DNA fragment with AtFT-specific primers are sufficient to determine whether the seedlings are transgenic or not. An analysis of 72 second generation-seedlings clearly showed that about 50% of them still reveal the presence of the T-DNA, confirming data already published. To prove if unanticipated genomic changes were induced by T-DNA integration, extended future studies using long-range sequencing technologies are required once a suitable chromosome-level P. tremula reference genome sequence is available.

Sequencing of two transgenic early-flowering poplar lines confirmed vector-free single-locus T-DNA integration / Kersten B.; Leite Montalvao A.P.; Hoenicka H.; Vettori C.; Paffetti D.; Fladung M.. - In: TRANSGENIC RESEARCH. - ISSN 0962-8819. - STAMPA. - 29:(2020), pp. 321-337. [10.1007/s11248-020-00203-0]

Sequencing of two transgenic early-flowering poplar lines confirmed vector-free single-locus T-DNA integration

Paffetti D.;
2020

Abstract

Next-generation sequencing (NGS) approaches are attractive alternatives to the PCR-based characterisation of genetically modified plants for safety assessment and labelling since NGS is highly sensitive to the detection of T-DNA inserts as well as vector backbone sequences in transgenic plants. In this study, two independent transgenic male Populus tremula lines, T193-2 and T195-1, both carrying the FLOWERING LOCUS T gene from Arabidopsis thaliana under control of a heat-inducible promoter (pHSP::AtFT) and the non-transgenic control clone W52, were further characterised by NGS and third-generation sequencing. The results support previous findings that the T-DNA was hemizygously inserted in one genomic locus of each line. However, the T-DNA insertions consist of conglomerations of one or two T-DNA copies together with a small T-DNA fragment without AtFT parts. Based on NGS data, no additional T-DNA splinters or vector backbone sequences could be identified in the genome of the two transgenic lines. Seedlings derived from crosses between the pHSP::AtFT transgenic male parents and female wild type plants are therefore expected to be T-DNA splinter or vector backbone free. Thus, PCR analyses amplifying a partial T-DNA fragment with AtFT-specific primers are sufficient to determine whether the seedlings are transgenic or not. An analysis of 72 second generation-seedlings clearly showed that about 50% of them still reveal the presence of the T-DNA, confirming data already published. To prove if unanticipated genomic changes were induced by T-DNA integration, extended future studies using long-range sequencing technologies are required once a suitable chromosome-level P. tremula reference genome sequence is available.
2020
29
321
337
Goal 15: Life on land
Kersten B.; Leite Montalvao A.P.; Hoenicka H.; Vettori C.; Paffetti D.; Fladung M.
File in questo prodotto:
File Dimensione Formato  
Kersten2020_Article_SequencingOfTwoTransgenicEarly.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 1.56 MB
Formato Adobe PDF
1.56 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1192218
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact