Landfills for solid waste disposal release to the atmosphere a large variety of volatile organic compounds (VOCs). Bacterial activity in landfill cover soils can play an important role in mitigating VOC emission. In order to evaluate the effects of degradation processes and characterize VOCs composition in landfill cover soil, gases from 60 sites and along 7 vertical profiles within the cover soil were collected for chemical and isotopic analysis at two undifferentiated urban solid waste disposal sites in Spain: (i) Pinto (Madrid) and (ii) Zurita (Fuerteventura, Canary Islands). The CO2/CH4 ratios and δ13C-CO2 and δ13C-CH4 values were controlled by either oxidation or reduction processes of landfill gas (LFG). VOCs were dominated by aromatics, alkanes and O-substituted compounds, with minor cyclics, terpenes, halogenated and S-substituted compounds. Degradation processes, depending on both (i) waste age and (ii) velocity of the uprising biogas through the soil cover, caused (i) an increase of degradation products (e.g., CO2, O-substituted compounds) and (ii) a decrease of degradable components (e.g., CH4, alkanes, alkylated aromatics, cyclic and S-substituted compounds). Terpenes, halogenated compounds, phenol and furans were unaffected by degradation processes and only depended on waste composition. These results highlight the fundamental role played by microbial activity in mitigating atmospheric emissions of VOCs from landfills. Nevertheless, the recalcitrant behaviour shown by compounds hazardous for health and environment remarks the importance of a correct landfill management that has to be carried out for years after the waste disposal activity is completed, since LFG emissions can persist for long time.

Volatile organic compounds (VOCs) in solid waste landfill cover soil: Chemical and isotopic composition vs. degradation processes / Randazzo A., Asensio-Ramos M., Melian G.V., Venturi S., Padron E., Hernandez P.A., Perez N.M., Tassi F.. - In: SCIENCE OF THE TOTAL ENVIRONMENT. - ISSN 0048-9697. - ELETTRONICO. - 726:(2020), pp. 0-0. [10.1016/j.scitotenv.2020.138326]

Volatile organic compounds (VOCs) in solid waste landfill cover soil: Chemical and isotopic composition vs. degradation processes

Randazzo A.
;
Venturi S.;Tassi F.
2020

Abstract

Landfills for solid waste disposal release to the atmosphere a large variety of volatile organic compounds (VOCs). Bacterial activity in landfill cover soils can play an important role in mitigating VOC emission. In order to evaluate the effects of degradation processes and characterize VOCs composition in landfill cover soil, gases from 60 sites and along 7 vertical profiles within the cover soil were collected for chemical and isotopic analysis at two undifferentiated urban solid waste disposal sites in Spain: (i) Pinto (Madrid) and (ii) Zurita (Fuerteventura, Canary Islands). The CO2/CH4 ratios and δ13C-CO2 and δ13C-CH4 values were controlled by either oxidation or reduction processes of landfill gas (LFG). VOCs were dominated by aromatics, alkanes and O-substituted compounds, with minor cyclics, terpenes, halogenated and S-substituted compounds. Degradation processes, depending on both (i) waste age and (ii) velocity of the uprising biogas through the soil cover, caused (i) an increase of degradation products (e.g., CO2, O-substituted compounds) and (ii) a decrease of degradable components (e.g., CH4, alkanes, alkylated aromatics, cyclic and S-substituted compounds). Terpenes, halogenated compounds, phenol and furans were unaffected by degradation processes and only depended on waste composition. These results highlight the fundamental role played by microbial activity in mitigating atmospheric emissions of VOCs from landfills. Nevertheless, the recalcitrant behaviour shown by compounds hazardous for health and environment remarks the importance of a correct landfill management that has to be carried out for years after the waste disposal activity is completed, since LFG emissions can persist for long time.
2020
726
0
0
Goal 3: Good health and well-being for people
Goal 15: Life on land
Randazzo A., Asensio-Ramos M., Melian G.V., Venturi S., Padron E., Hernandez P.A., Perez N.M., Tassi F.
File in questo prodotto:
File Dimensione Formato  
2020_Randazzo et al., 2020. Landfills.pdf

Accesso chiuso

Descrizione: articolo
Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 3.65 MB
Formato Adobe PDF
3.65 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1192339
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 40
  • ???jsp.display-item.citation.isi??? 37
social impact